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ABSTRACT: A brief review of mapping generalized 
template matching operations onto reconfigurable 
computers is given. A combinatorial optimization 
process, where the objective is to minimize the FPGA 
computation time and the constraint is the FPGA 
board resources, is a key step of the whole mapping 
process. This paper presents algorithms for solving the 
optimization problem and experimental results. 

Keywords: FPGA, Reconfigurable Computing, 
Template Matching, Combinatorial Optimization 

1. Introduction 
The generalized template matching (GTM) operations 
include image-processing algorithms for template 
matching, 2D digital filtering, morphologic operations, 
motion estimation, and so on. They all involve moving 
a "window" (or template) pixel by pixel in a scanning 
line order. GTM operations offer ample parallelism 
opportunities and can be accelerated by reconfigurable 
computers based on FPGA coprocessor boards. 

Previously the first author and other researchers at 
Wright State University in Ohio developed a tool to 
automatically explore the GTM FPGA design space 
and produce VHDL files and C++ host program [1-3]. 
The constraints of FPGA chip area and memory ports 
connected with each FPGA were considered by the 
tool. Our approach is different from many compiler- 
based design environment efforts on reconfigurable 
computers [4-5]. By restricting the target applications, 
our approach can explore the design space and provide 
design solutions that satisfy FPGA board resource 
constraints. This is done by evaluating different buffer 
structures and changing the amount of parallelism and 
hardware sharing. 

The overall approach of mapping GTM operations 
onto reconfigurable computers consists of three steps. 
The first two steps enumerate, evaluate, and list enough 
number of basic GTM building blocks, called region 
functions (RFs).  Each RF contains an FPGA buffer 

and a pipelined functional unit, called a unit function, 
which evaluates the window computation at one or 
more consecutive pixel locations. Different RFs will 
have different throughputs, occupy different FPGA 
areas, and require different numbers of memory ports. 
These two steps were reported in [1]. The third step, 
called RF binding, selects one or more RFs for each 
FPGA chip such that the total FPGA execution time is 
minimal under the FPGA board resource constraints. 
RFs on all FPGA chips work independently and in 
parallel on different image regions and/or, if any, 
different templates under the control of a host program. 
This paper will present RF binding problem, which is 
formulated as a combinatorial optimization problem, 
algorithms for solving the problem, as well as some 
experimental results.  

2. RF Binding Problem 
In the RF binding process, the selected RFs are needed 
to bind to FPGA chips, memory ports, templates, and 
processing regions (consecutive rows of an image 
region).  

The workload of a GTM operation is defined to be the 
sum of products of the number of rows of each image 
region and the number of templates that are applied to 
the image region. Similarly, the workload of a selected 
RF is defined to be the sum of products of rows of each 
assigned processing region and the number of assigned 
corresponding templates. It is clear that the workloads 
of all selected RFs must construct a partition of the 
overall GTM workload. It can be proved that if the 
GTM workload is evenly partitioned among FPGA 
chips, then only one FPGA chip is needed to consider 
in the RF binding process. 

The execution time of a selected RF working on the 
workload WL(RF) can be approximately computed by 

 

where S(RF) is the computation time of RF computing 
along one image row with one template.  
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Now, assume that RF1, RF2, …, and RFq are selected 
for an FPGA design. Then, the FPGA execution time is 
equal to max{Time(RFj) : 1 ≤ j ≤ q} because all RFj (j 
= 1, 2, …, q) work independently and in parallel. Note 
that if the workload of RFj (j = 1, 2, …, q) is assigned 
according to the following formula: 

 

 

 

then, WL(RF1 ), WL(RF2 ), …, WL(RFq ) construct a 
partition of the overall GTM workload, and the FPGA 
execution time is equal to 

 

 

 

Also note that to minimize the FPGA execution time 
(2.3) is equivalent to maximize sum of 1/S(RFj) over j 
(j=1, 2, …, q). Therefore, the RF binding problem can 
be formulated as follows: 

 

 

 

 

 

 

 

In the above formulation, the objective is to minimize 
the FPGA computation time, SFPGA is the size (number 
of slices) of an FPGA chip, and NMP is the number of 
memory ports connected to each FPGA chip, Area(RFj) 
is the RFj FPGA area, and Port(RFj) is the number of 
memory ports used by RFj, j = 1, 2, …, q. The first 
constraint is the FPGA area constraint; the second 
constraint is the memory port constraint. Note that 
different RFs will not share memory ports because all 
RFs need to access onboard memory every clock cycle. 

Note that after one gets a set of RFs from (2.4), one can 
simply bind them to all templates, and then bind them 
to appropriate processing regions such that (2.2) holds. 
Also note that when (2.2) is not an integer, a truncation 
should be used. 

3. RF Binding Algorithms 
A naive method to solve Problem (2.4) is to go through 
the entire search space and to compute the following: 
For each q (1 ≤ q ≤ NMP), select all possible q RFs out 
of the candidate RFs, verify the constraint conditions, 
and compute and compare sums of 1/S(RFj) over j 
(j=1, 2, …, q). However, the complexity of this naïve 
method is equal to ( )MPNNθ , where N is the number of 

all candidate RF designs. 

3.1 Grouping 
In order to reduce the search space, the candidate RF 
designs can be divided into NMP groups, denoted by 
Cad(i) (i = 1, 2, …, NMP), such that each candidate RF 
design in Cad(i) requires i memory ports. In this way, 
RF designs can be selected from individual groups 
instead of from the whole set of candidate RF designs 
provided that it is known which group each RF design 
should be chosen from. Based on this idea, Problem 
(2.4) can be solved by solving the following problem:  

 

 

 

first, and then for each solution (i1, i2, …, iq) to (3.1), 
solving the following problem: 

 

 

 

 

 

where                     . Therefore, the solution to (3.2) for 

(i1, i2, …, iq) also satisfies the FPGA area constraint in 

(2.4), and then is a feasible solution to (2.4). 

3.2 Integer Partition Algorithm  
Problem (3.1) is closely related to the following integer 
partition problem:  

 

 

The solution to the above problem is a set of q-vectors 
denoted by S(q,n). For example, if n=8 and q=4, then 
S(q, n) = { (1,1,1,5), (1,1,2,4), (1,1,3,3), (1,2,2,3), 
(2,2,2,2)}. Thus the solution space to (3.1) is the union 
of S(q, n) over all q and n satisfying 1 ≤ q ≤ n ≤ NMP.  

Define an operation: Θ: I×{q-vectors} � {(q+1)-
vectors} such that a Θ (a1, a2, …, aq) = (a, a1+a-1, 
a2+a-1, …, aq+a-1). Define a notation aΘS(q,n)  = 
{aΘ(a1, a2, …, aq) : (a1, a2, …, aq) ∈  S(q,n)}. Then the 
solution to the above integer partition problem can be 
expressed by the following recursive equation. 

 

 

 

where k=n/q.  

In fact, S(q,n) needs to be computed for all q and n that 
satisfy 1≤ q ≤ n ≤ NMP. If each S(q,n) is computed by 
the above recursive equation, there would be a lot of 
repeated computations. To avoid that, the dynamic 
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programming technique should be used. First, compute 
all S(i,i), i = 1, 2, …, NMP, and all S(1,j), j = 2, 3, …, 
NMP. Then, for k > 1, compute all S(k,j), j = k+1, …, 
NMP, based on the previously computed value of S(k-1, 
j), j = k, …, NMP.  

3.3 Multi-Dimensional Binary Search 
This section presents an efficient algorithm, called 
Multi-Dimensional Binary Search, to solve Problem 
(3.2). It uses the divide and conquer method. In each 
search step, either the search terminates because a 
search result is found or no result can be found, or the 
search problem is divided into smaller size problems.  

Initially, each candidate RF group Cad(i) = { RFi,j | 
j=1,2,…,m(i)}, (i = 1, 2, …, NMP), can be sorted in the 
decreasing order of the RF speeds (i.e. 1/S(RF)). So it 
is assumed that  

 

It can be also assumed that 

 

This assumption is reasonable because if an RF in 
Cad(i) uses larger FPGA area and has slower speed 
than another RF in Cad(i), it should be removed from 
the candidate RF group. 

Given a solution (i1, i2, …, iq) to (3.1), compute sum of 
the largest RF area (SLA) and sum of the smallest RF 
area (SSA), from Cad(i1), …, Cad(iq), respectively: 

 

 

 

If SSA > SFPGA, then no {
jiRF | 1 ≤ j ≤ q} will satisfy 

the FPGA area constraint. So there is no solution to 
(3.2) for (i1, i2, …, iq). On the other hand, if SLA < 
SFPGA, then the set {

1,jiRF | 1 ≤ j ≤ q} is a feasible 

solution to (3.2) for (i1, i2,…, iq). 

Otherwise, compute sum of the median RF area (SMA) 
from Cad(i1), …, Cad(iq): 

 

 

Note that when m(j) is not divisible by 2, the ceiling of 
m(j)/2 is used. For example, 1/2 = 1 and 3/2 = 2.   

If SMA > SFPGA, then Cad(ij) (1 ≤ j ≤ q) can be divided 
into two parts: }2/)(,...,1|{)0,( , jkij imkRFiCad

j
==  and 

)}(,...,12/)(|{)1,( , jjkij imimkRFiCad
j

+== . There are 

2q combinations in picking q RFs from these 2×q sets. 
One combination Cad(i1,0),…, Cad(iq,0) can be ruled 
out right away. So the search can be divided into 2q-1 

sub-problems. Otherwise, if SMA ≤ SFPGA, then Cad(ij) 
(1 ≤ j ≤ q) can be divided into two parts: 
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j

 and 
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== . Picking q 

RFs from these 2×q sets gives 2q combinations. Then 
the search can be divided into 2q-1 sub-problems by 
ruling out one combination Cad(i1,1), …, Cad(iq,1). In 
addition, the set {

2/)(, jj imiRF  | 1 ≤ j ≤ q} is a feasible 

solution of (3.2) for (i1, i2,…, iq).  

Assume that each Cad(i) contains the same number of 
RFs. The worst-case complexity of this algorithm will 
be  

 

 

where M=N/NMP and N is the number of all candidate 
RFs. Note that Problem (3.2) can also be solved by an 
exhaustive search, i.e. searching all the combinations 
from RF groups. Under the same assumption, the 
worst-case complexity of the exhaustive search will 
be ( )qMθ .  

It can be noticed that when q is large, the worst-case 
complexity of multi-dimensional binary search is 
almost equal to ( )qMθ . But in an average case, it is 

much smaller. 

The following example illustrates how the multi-
dimensional binary search algorithm works. Assume 
SFPGA=37 and (1, 2) is a solution to (3.1). So we need 
to find one RF from Cad(1) and one RF from Cad(2). 
Assume there are six RFs in Cad(1) and five RFs in 
Cad(2) and their areas are listed in the following table.  

First, SLA = 24+35 = 59 > SFPGA and SSA=12+18 = 30 
< SFPGA. As SMA = 16+26 = 42 > SFPGA, three sub-
problems are needed to consider. The groupings of the 
three sub-problems are shown in the following three 
tables. 

 

 

j 1 2 3 4 5 6 
Area(RF1,j) 24 20 16 14 13 12 
Area(RF2,j) 35 29 26 22 18 NA 

Sub(1): j 1 2 3 4 5 6 
Area(RF1,j) NA NA NA 14 13 12 
Area(RF2,j) NA NA NA 22 18 NA 

Sub(2): j 1 2 3 4 5 6 
Area(RF1,j) NA NA NA 14 13 12 
Area(RF2,j) 35 29 26 NA NA NA 

Sub(3): j 1 2 3 4 5 6 
Area(RF1,j) 24 20 16 NA NA NA 
Area(RF2,j) NA NA NA 22 18 NA 
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For the sub-problem (1), since SLA = 14+22 = 36 < 
SFPGA, (RF1,4, RF2,4) is a feasible solution to (3.2). For 
the sub-problem (2), since SSA = 12+26 = 38 > SFPGA, 
there is no solution. For the sub-problem (3), SLA = 46 
and SSA = 34. As SMA = 42 > SFPGA, it splits into three 
sub-problems again as shown below. Sub-problem (3-
1) provides another feasible solution (RF1,3, RF2,5), and 
Sub-problems (3-2) and (3-3) have no solution.  

 

 

The final solution to (3.2) for (1, 2) then will be one of 
the two feasible solutions that has maximum sum of 
speeds. 

4. Experimental Results and Analysis 
From Section 3, Problem (2.4) can be solved by a 
naïve method or by solving Problem (3.1) and Problem 
(3.2). Further, Problem (3.2) can be solved by either 
the exhaustive search or the multi-dimensional binary 
search. These three methods of solving (2.4), called the 
naïve method, the exhaustive search, and the multi-
dimensional binary search, respectively, were all 
implemented in a GTM design tool for testing their 
performance. In the experiment, assume NMP=4, for a 
GTM operation with a 3×4 template, 43 candidate RFs 
were obtained first by the process of enumerating basic 
GTM building blocks. Then the RF binding program is 
executed with each of the above three methods for 
different FPGA Slice counts. 

In average, the search space of the naïve approach is 
about 288 times larger than that of the exhaustive 
search; the search space of the exhaustive search is 
about 9 times larger then that of the multi-dimensional 
binary search. The search space sizes of the exhaustive 
search and the multi-dimensional binary search are 
depicted in Figure 1. (The diagram for the computation 
times has a similar shape with that in Figure 1 and is 
omitted.) 

When the FPGA Slice count (area constraint) is larger 
than a value, the search space size of the exhaustive 
search are constant. This is because when the FPGA 
size is large enough, the number of candidate RFs is 
fixed. When FPGA size is small, RF designs whose 

area is bigger than FPGA size will be not considered.  
On the other hand, the search space size of the multi-
dimensional binary search has a normal distribution 
over the FPGA Slice counts. When the FPGA area is 
relatively small or large enough, the search space size 
is small, because the multi-dimensional binary search 
will need less numbers of iterations. 
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Sub(3-1): J 1 2 3 4 5 6 
Area(RF1,j) NA NA 16 NA NA NA 
Area(RF2,j) NA NA NA NA 18 NA 

Sub(3-2): J 1 2 3 4 5 6 
Area(RF1,j) NA NA 16 NA NA NA 
Area(RF2,j) NA NA NA 22 NA NA 

Sub(3-3): J 1 2 3 4 5 6 
Area(RF1,j) 24 20 NA NA NA NA 
Area(RF2,j) NA NA NA NA 18 NA 

Figure 1: Sizes of the Search Spaces 


