
Combinatorial Optimization in Mapping Generalized
Template Matching onto Reconfigurable Computers

Xuejun Liang* and Qutaibah Malluhi**
*Department of Computer Science, Jackson State University, Jackson, MS, USA 39217

xuejun.liang@jsums.edu
**Computer Science and Engineering Department, Qatar University, Doha, Qatar

qmalluhi@qu.edu.qa

ABSTRACT: A brief review of mapping generalized
template matching operations onto reconfigurable
computers is given. A combinatorial optimization
process, where the objective is to minimize the FPGA
computation time and the constraint is the FPGA
board resources, is a key step of the whole mapping
process. This paper presents algorithms for solving the
optimization problem and experimental results.

Keywords: FPGA, Reconfigurable Computing,
Template Matching, Combinatorial Optimization

1. Introduction
The generalized template matching (GTM) operations
include image-processing algorithms for template
matching, 2D digital filtering, morphologic operations,
motion estimation, and so on. They all involve moving
a "window" (or template) pixel by pixel in a scanning
line order. GTM operations offer ample parallelism
opportunities and can be accelerated by reconfigurable
computers based on FPGA coprocessor boards.

Previously the first author and other researchers at
Wright State University in Ohio developed a tool to
automatically explore the GTM FPGA design space
and produce VHDL files and C++ host program [1-3].
The constraints of FPGA chip area and memory ports
connected with each FPGA were considered by the
tool. Our approach is different from many compiler-
based design environment efforts on reconfigurable
computers [4-5]. By restricting the target applications,
our approach can explore the design space and provide
design solutions that satisfy FPGA board resource
constraints. This is done by evaluating different buffer
structures and changing the amount of parallelism and
hardware sharing.

The overall approach of mapping GTM operations
onto reconfigurable computers consists of three steps.
The first two steps enumerate, evaluate, and list enough
number of basic GTM building blocks, called region
functions (RFs). Each RF contains an FPGA buffer

and a pipelined functional unit, called a unit function,
which evaluates the window computation at one or
more consecutive pixel locations. Different RFs will
have different throughputs, occupy different FPGA
areas, and require different numbers of memory ports.
These two steps were reported in [1]. The third step,
called RF binding, selects one or more RFs for each
FPGA chip such that the total FPGA execution time is
minimal under the FPGA board resource constraints.
RFs on all FPGA chips work independently and in
parallel on different image regions and/or, if any,
different templates under the control of a host program.
This paper will present RF binding problem, which is
formulated as a combinatorial optimization problem,
algorithms for solving the problem, as well as some
experimental results.

2. RF Binding Problem
In the RF binding process, the selected RFs are needed
to bind to FPGA chips, memory ports, templates, and
processing regions (consecutive rows of an image
region).

The workload of a GTM operation is defined to be the
sum of products of the number of rows of each image
region and the number of templates that are applied to
the image region. Similarly, the workload of a selected
RF is defined to be the sum of products of rows of each
assigned processing region and the number of assigned
corresponding templates. It is clear that the workloads
of all selected RFs must construct a partition of the
overall GTM workload. It can be proved that if the
GTM workload is evenly partitioned among FPGA
chips, then only one FPGA chip is needed to consider
in the RF binding process.

The execution time of a selected RF working on the
workload WL(RF) can be approximately computed by

where S(RF) is the computation time of RF computing
along one image row with one template.

)()()()1.2(RFWLRFSRFTime ×=

Now, assume that RF1, RF2, …, and RFq are selected
for an FPGA design. Then, the FPGA execution time is
equal to max{Time(RFj) : 1 ≤ j ≤ q} because all RFj (j
= 1, 2, …, q) work independently and in parallel. Note
that if the workload of RFj (j = 1, 2, …, q) is assigned
according to the following formula:

then, WL(RF1), WL(RF2), …, WL(RFq) construct a
partition of the overall GTM workload, and the FPGA
execution time is equal to

Also note that to minimize the FPGA execution time
(2.3) is equivalent to maximize sum of 1/S(RFj) over j
(j=1, 2, …, q). Therefore, the RF binding problem can
be formulated as follows:

In the above formulation, the objective is to minimize
the FPGA computation time, SFPGA is the size (number
of slices) of an FPGA chip, and NMP is the number of
memory ports connected to each FPGA chip, Area(RFj)
is the RFj FPGA area, and Port(RFj) is the number of
memory ports used by RFj, j = 1, 2, …, q. The first
constraint is the FPGA area constraint; the second
constraint is the memory port constraint. Note that
different RFs will not share memory ports because all
RFs need to access onboard memory every clock cycle.

Note that after one gets a set of RFs from (2.4), one can
simply bind them to all templates, and then bind them
to appropriate processing regions such that (2.2) holds.
Also note that when (2.2) is not an integer, a truncation
should be used.

3. RF Binding Algorithms
A naive method to solve Problem (2.4) is to go through
the entire search space and to compute the following:
For each q (1 ≤ q ≤ NMP), select all possible q RFs out
of the candidate RFs, verify the constraint conditions,
and compute and compare sums of 1/S(RFj) over j
(j=1, 2, …, q). However, the complexity of this naïve
method is equal to ()MPNNθ , where N is the number of

all candidate RF designs.

3.1 Grouping
In order to reduce the search space, the candidate RF
designs can be divided into NMP groups, denoted by
Cad(i) (i = 1, 2, …, NMP), such that each candidate RF
design in Cad(i) requires i memory ports. In this way,
RF designs can be selected from individual groups
instead of from the whole set of candidate RF designs
provided that it is known which group each RF design
should be chosen from. Based on this idea, Problem
(2.4) can be solved by solving the following problem:

first, and then for each solution (i1, i2, …, iq) to (3.1),
solving the following problem:

where . Therefore, the solution to (3.2) for

(i1, i2, …, iq) also satisfies the FPGA area constraint in

(2.4), and then is a feasible solution to (2.4).

3.2 Integer Partition Algorithm
Problem (3.1) is closely related to the following integer
partition problem:

The solution to the above problem is a set of q-vectors
denoted by S(q,n). For example, if n=8 and q=4, then
S(q, n) = { (1,1,1,5), (1,1,2,4), (1,1,3,3), (1,2,2,3),
(2,2,2,2)}. Thus the solution space to (3.1) is the union
of S(q, n) over all q and n satisfying 1 ≤ q ≤ n ≤ NMP.

Define an operation: Θ: I×{q-vectors} � {(q+1)-
vectors} such that a Θ (a1, a2, …, aq) = (a, a1+a-1,
a2+a-1, …, aq+a-1). Define a notation aΘS(q,n) =
{aΘ(a1, a2, …, aq) : (a1, a2, …, aq) ∈ S(q,n)}. Then the
solution to the above integer partition problem can be
expressed by the following recursive equation.

where k=n/q.

In fact, S(q,n) needs to be computed for all q and n that
satisfy 1≤ q ≤ n ≤ NMP. If each S(q,n) is computed by
the above recursive equation, there would be a lot of
repeated computations. To avoid that, the dynamic

























≤

≤

∑

∑

∑

≤≤

≤≤

≤≤

qj
MPj

qj
FPGAj

j

NRFPort

SRFArea

RF/S

1

1

qj1

)(

)(

subject to

)(1

maxmize To

)4.2(









−∗−−−−Θ
=
=

=

=
))1()1()(,1(

)}1,...,1,1({

1)}{(

),(

1
otherwiseqbbnqSb

nqif

qifn

nqS
k

bU







≤≤≤≤

=+++

q

q

iii

niii

...1

...
)3.3(

21

21









≤≤

≤≤≤≤

≤+++

MP

q

MPq

Nq

iii

Niii

1

...1

...

)1.3(21

21















≤∑

∑

≤≤

≤≤

qj
FPGAi

qj
i

SRFArea

RFS

j

j

1

1

)(

subject to

)(1/

maximize To

)2.3(

))(/1()(

_
)()2.2(

1
∑

≤≤
×

=

qj
jj

j RFSRFS

workloadTotal
RFWL

∑
≤≤ kj

jRFS

workloadTotal

1

)(/1

_
)3.2(

)(ji iCadRF
j
∈

programming technique should be used. First, compute
all S(i,i), i = 1, 2, …, NMP, and all S(1,j), j = 2, 3, …,
NMP. Then, for k > 1, compute all S(k,j), j = k+1, …,
NMP, based on the previously computed value of S(k-1,
j), j = k, …, NMP.

3.3 Multi-Dimensional Binary Search
This section presents an efficient algorithm, called
Multi-Dimensional Binary Search, to solve Problem
(3.2). It uses the divide and conquer method. In each
search step, either the search terminates because a
search result is found or no result can be found, or the
search problem is divided into smaller size problems.

Initially, each candidate RF group Cad(i) = { RFi,j |
j=1,2,…,m(i)}, (i = 1, 2, …, NMP), can be sorted in the
decreasing order of the RF speeds (i.e. 1/S(RF)). So it
is assumed that

It can be also assumed that

This assumption is reasonable because if an RF in
Cad(i) uses larger FPGA area and has slower speed
than another RF in Cad(i), it should be removed from
the candidate RF group.

Given a solution (i1, i2, …, iq) to (3.1), compute sum of
the largest RF area (SLA) and sum of the smallest RF
area (SSA), from Cad(i1), …, Cad(iq), respectively:

If SSA > SFPGA, then no {
jiRF | 1 ≤ j ≤ q} will satisfy

the FPGA area constraint. So there is no solution to
(3.2) for (i1, i2, …, iq). On the other hand, if SLA <
SFPGA, then the set {

1,jiRF | 1 ≤ j ≤ q} is a feasible

solution to (3.2) for (i1, i2,…, iq).

Otherwise, compute sum of the median RF area (SMA)
from Cad(i1), …, Cad(iq):

Note that when m(j) is not divisible by 2, the ceiling of
m(j)/2 is used. For example, 1/2 = 1 and 3/2 = 2.

If SMA > SFPGA, then Cad(ij) (1 ≤ j ≤ q) can be divided
into two parts: }2/)(,...,1|{)0,(, jkij imkRFiCad

j
== and

)}(,...,12/)(|{)1,(, jjkij imimkRFiCad
j

+== . There are

2q combinations in picking q RFs from these 2×q sets.
One combination Cad(i1,0),…, Cad(iq,0) can be ruled
out right away. So the search can be divided into 2q-1

sub-problems. Otherwise, if SMA ≤ SFPGA, then Cad(ij)
(1 ≤ j ≤ q) can be divided into two parts:

}12/)(,...,1|{)0,(, −== jkij imkRFiCad
j

 and

)}(,...,2/)(|{)1,(, jjkij imimkRFiCad
j

== . Picking q

RFs from these 2×q sets gives 2q combinations. Then
the search can be divided into 2q-1 sub-problems by
ruling out one combination Cad(i1,1), …, Cad(iq,1). In
addition, the set {

2/)(, jj imiRF | 1 ≤ j ≤ q} is a feasible

solution of (3.2) for (i1, i2,…, iq).

Assume that each Cad(i) contains the same number of
RFs. The worst-case complexity of this algorithm will
be

where M=N/NMP and N is the number of all candidate
RFs. Note that Problem (3.2) can also be solved by an
exhaustive search, i.e. searching all the combinations
from RF groups. Under the same assumption, the
worst-case complexity of the exhaustive search will
be ()qMθ .

It can be noticed that when q is large, the worst-case
complexity of multi-dimensional binary search is
almost equal to ()qMθ . But in an average case, it is

much smaller.

The following example illustrates how the multi-
dimensional binary search algorithm works. Assume
SFPGA=37 and (1, 2) is a solution to (3.1). So we need
to find one RF from Cad(1) and one RF from Cad(2).
Assume there are six RFs in Cad(1) and five RFs in
Cad(2) and their areas are listed in the following table.

First, SLA = 24+35 = 59 > SFPGA and SSA=12+18 = 30
< SFPGA. As SMA = 16+26 = 42 > SFPGA, three sub-
problems are needed to consider. The groupings of the
three sub-problems are shown in the following three
tables.

j 1 2 3 4 5 6
Area(RF1,j) 24 20 16 14 13 12
Area(RF2,j) 35 29 26 22 18 NA

Sub(1): j 1 2 3 4 5 6
Area(RF1,j) NA NA NA 14 13 12
Area(RF2,j) NA NA NA 22 18 NA

Sub(2): j 1 2 3 4 5 6
Area(RF1,j) NA NA NA 14 13 12
Area(RF2,j) 35 29 26 NA NA NA

Sub(3): j 1 2 3 4 5 6
Area(RF1,j) 24 20 16 NA NA NA
Area(RF2,j) NA NA NA 22 18 NA

∑
≤≤

=
qj

i j
RFAreaSLA

1
1,)()6.3(







=
>−

1 if)(log

1 if)(

2

)12(log2

qM

qM
q

θ
θ

)()()()4.3()(,2,1, imiii RFSRFSRFS <<< K

)()()()5.3()(,2,1, imiii RFAreaRFAreaRFArea >>> K

∑
≤≤

=
qj

jmi j
RFAreaSSA

1
)(,)()7.3(

∑
≤≤

=
qj

jmi j
RFAreaSMA

1
2/)(,)()8.3(

For the sub-problem (1), since SLA = 14+22 = 36 <
SFPGA, (RF1,4, RF2,4) is a feasible solution to (3.2). For
the sub-problem (2), since SSA = 12+26 = 38 > SFPGA,
there is no solution. For the sub-problem (3), SLA = 46
and SSA = 34. As SMA = 42 > SFPGA, it splits into three
sub-problems again as shown below. Sub-problem (3-
1) provides another feasible solution (RF1,3, RF2,5), and
Sub-problems (3-2) and (3-3) have no solution.

The final solution to (3.2) for (1, 2) then will be one of
the two feasible solutions that has maximum sum of
speeds.

4. Experimental Results and Analysis
From Section 3, Problem (2.4) can be solved by a
naïve method or by solving Problem (3.1) and Problem
(3.2). Further, Problem (3.2) can be solved by either
the exhaustive search or the multi-dimensional binary
search. These three methods of solving (2.4), called the
naïve method, the exhaustive search, and the multi-
dimensional binary search, respectively, were all
implemented in a GTM design tool for testing their
performance. In the experiment, assume NMP=4, for a
GTM operation with a 3×4 template, 43 candidate RFs
were obtained first by the process of enumerating basic
GTM building blocks. Then the RF binding program is
executed with each of the above three methods for
different FPGA Slice counts.

In average, the search space of the naïve approach is
about 288 times larger than that of the exhaustive
search; the search space of the exhaustive search is
about 9 times larger then that of the multi-dimensional
binary search. The search space sizes of the exhaustive
search and the multi-dimensional binary search are
depicted in Figure 1. (The diagram for the computation
times has a similar shape with that in Figure 1 and is
omitted.)

When the FPGA Slice count (area constraint) is larger
than a value, the search space size of the exhaustive
search are constant. This is because when the FPGA
size is large enough, the number of candidate RFs is
fixed. When FPGA size is small, RF designs whose

area is bigger than FPGA size will be not considered.
On the other hand, the search space size of the multi-
dimensional binary search has a normal distribution
over the FPGA Slice counts. When the FPGA area is
relatively small or large enough, the search space size
is small, because the multi-dimensional binary search
will need less numbers of iterations.

0

2000

4000

6000

8000

10000

12000

14000

FPGA Slice Count (From 200 TO 4300 in Every 100)

S
iz

e
o

f
S

ea
rc

h
 S

p
ac

e

Multi-Dimensional Binary Search

Exhaustive Search

5. REFERENCES
[1] X. Liang and J. Jean, Mapping of Generalized

Template Mapping onto Reconfigurable
Computers, IEEE Trans. on VLSI System, 11(3):
485-498, 2003

[2] J. Jean, X. Liang, X. Guo, H. Zhang, and F. Wang,
Initial Results of GOM (GTM Optimal Mapping),
Proceedings of International Conference on
Engineering of Reconfigurable Systems and
Algorithms”, Las Vegas, Nevada, USA, pp. 146-
152, June 2002

[3] X. Liang and J. Jean, Memory Access Pattern
Enumeration in GTM Mapping on Reconfigurable
Computers, Proceedings of International
Conference on Engineering of Reconfigurable
Systems and Algorithms, pp. 8-14, June 2001

[4] W. Bohm, J. Hammes, B. Draper, M. Chawathe,
C. Ross, R. Rinker, and W. Najjar, Mapping a
Single Assignment Programming Language to
Reconfigurable systems, Supercomputing, 21:117-
130, 2002

[5] D. C. Cronquist, etc, Specifying and Compiling
Applications for RaPiD, in IEEE Symposium on
FPGA Custom Computing Machines, pp. 116-125,
April 1998.

Sub(3-1): J 1 2 3 4 5 6
Area(RF1,j) NA NA 16 NA NA NA
Area(RF2,j) NA NA NA NA 18 NA

Sub(3-2): J 1 2 3 4 5 6
Area(RF1,j) NA NA 16 NA NA NA
Area(RF2,j) NA NA NA 22 NA NA

Sub(3-3): J 1 2 3 4 5 6
Area(RF1,j) 24 20 NA NA NA NA
Area(RF2,j) NA NA NA NA 18 NA

Figure 1: Sizes of the Search Spaces

