Combinatorial Optimization in Mapping Generalized Template Matching onto Reconfigurable Computers

Xuejun Liang

Department of Computer Science, Jackson State University, Jackson, MS, USA 39217

Qutaibah Malluhi

Computer Science and Engineering Department, Qatar University, Doha, Qatar

Generalized Template Matching (GTM)

- Template Matching
- Two-D Digital Filtering
- Morphologic Operation
- Motion Estimation

For image region $i \leftarrow 1$ to r For template $j \leftarrow 1$ to $m(i)$

For (all) pixel P in $I R_{i}$ Basic-Function $\left(P, T_{i, j}\right)$

Pixel level parallelism Template level parallelism

Target FPGA Board Architecture

GTM Mapping Procedure

GTM Application Specification

Component Library
Adder, Multiplier,...

FPGA Board

GTM Mapping Procedure (Cont.)

Phase 1: Enumerate FPGA buffers and FPGA unit function Designs

2.

4.

5.

- -

BF1

BF1
UF_{1}

UF_{4}

GTM Mapping Procedure (Cont.)

Phase 2: Select UF designs and FPGA buffers to compose RF designs. Select a group of RFs, bind them to FPGA chips and memory ports, and partition the workload among them so as to minimize the computation time.

Each RF uses different memory ports

Region Function (RF) and works on different image regions

RF Mapping and Binding

To minimize the computation time by

1. Selecting a group of RFs
2. Binding them to FPGA chips \& memory ports
3. Partitioning the workload among them

RF Mapping and Binding (Cont.)

To minimize

$$
\max \left\{\operatorname{Time}\left(\mathrm{RF}_{\mathrm{i}, \mathrm{j}}\right) \mid 1 \leq i \leq N_{F P G A}, \text { and } 1 \leq j \leq q(i)\right\}
$$

subject to

$$
\left\{\begin{array}{l}
\sum_{1 \leq j \leq q(i)} \operatorname{Area}\left(R F_{i, j}\right) \leq S_{F P G A}, 1 \leq i \leq N_{F P G A} \\
\sum_{1 \leq j \leq q(i)} \operatorname{Port}\left(R F_{i, j}\right) \leq N_{M P}, 1 \leq i \leq N_{F P G A}
\end{array}\right\}
$$

$\operatorname{Time}\left(R F_{i, j}\right)=S\left(R F_{i, j}\right) \times W L\left(R F_{i, j}\right)$

$$
S(R F)=(I I / P F) \times C P \times C_{I M G}
$$

RF Mapping and Binding (Cont.)

Reduce to one FPGA chip case
by partitioning the workload evenly among FPGA chips
To minimize

$$
\max \left\{\operatorname{Time}\left(\mathrm{RF}_{\mathrm{j}}\right) \mid 1 \leq j \leq q\right\} \mid
$$

subject to

$$
\left\{\begin{array}{l}
\sum_{1 \leq j \leq q} \operatorname{Area}\left(R F_{j}\right) \leq S_{F P G A} \\
\sum_{1 \leq j \leq q} \operatorname{Port}\left(R F_{j}\right) \leq N_{M P} \\
\operatorname{Port}\left(R F_{j}\right) \geq 1,1 \leq j \leq q \\
\sum_{j=1}^{q} W L\left(R F_{j}\right)=\text { workload }
\end{array}\right.
$$

RF Mapping and Binding (Cont.)

Further reduce
by partitioning the workload "evenly" among RFs

To maximize

$$
\sum_{1 \leq j \leq q} 1 / S\left(R F_{j}\right)
$$

subject to

$$
\left\{\begin{array}{l}
\sum_{1 \leq j \leq q} \operatorname{Area}\left(R F_{j}\right) \leq S_{F P G A} \\
\sum_{1 \leq j \leq q} \operatorname{Port}\left(R F_{j}\right) \leq N_{M P}
\end{array}\right\}
$$

$$
W L(j)=\frac{\text { workload }}{S\left(R F_{j}\right) \times\left(\sum_{1 \leq j \leq q} 1 / S\left(R F_{j}\right)\right)}
$$

RF Selection and Port Binding

To maximize

$$
\sum_{1 \leq j \leq q} 1 / S\left(R F_{j}\right)
$$

subject to

$$
\left\{\begin{array}{l}
\sum_{1 \leq j \leq q} \operatorname{Area}\left(R F_{j}\right) \leq S_{F P G A} \\
\sum_{1 \leq j \leq q} \operatorname{Port}\left(R F_{j}\right) \leq N_{M P}
\end{array}\right\}
$$

Problem Size

$$
N^{1}+N^{2}+\ldots+N^{N_{M P}}=\left(N^{N_{M P}}-1\right) \times N /(N-1)
$$

N is number of RF designs
For Naïve Approach

$$
\begin{aligned}
& \text { Assume } \mathrm{N}_{\mathrm{MP}}=4, \mathrm{~W}_{\mathrm{PORT}}=32, \mathrm{~B}_{\mathrm{DATA}}=8, \mathrm{~N}_{\mathrm{MW}}=1, \\
& \alpha_{\mathrm{W}}=1.0, \mathrm{R}_{\mathrm{WIN}}=9 \text {, and } \mathrm{N}_{\mathrm{AP}}=20 . \text { Then } \mathrm{N}=114 \text { and } \\
& \rightarrow 1.7 \times 10^{8}
\end{aligned}
$$

1. Naïve Approach
2. Further reduce to two sub-problems

- Generalized Integer Partition Problem
- Generalized Knapsack Problem

RF Selection and Port Binding (Cont.)

Generalized Integer Partition

$$
\begin{gathered}
i_{1}+i_{2}+\ldots+i_{q} \leq N_{M P} \\
1 \leq i_{1} \leq i_{2} \leq \ldots \leq i_{q} \\
1 \leq q \\
i_{j}=\operatorname{Port}\left(R F_{i_{j}}\right)
\end{gathered}
$$

Generalized Knapsack Problem
To maximize

$$
\sum_{1 \leq j \leq q} 1 / \mathrm{S}\left(\mathrm{RF}_{\mathrm{i}_{\mathrm{j}}}\right)
$$

subject to

$$
\sum_{1 \leq j \leq q} \operatorname{Area}\left(\mathrm{RF}_{\mathrm{i}_{\mathrm{j}}}\right) \leq S_{F P G A}
$$

1. Solving GIP
2. For each solution of GIP, solving GKP
A. Exhaustive Search, or
B. Multi-Dimensional Binary Search (MDBS)

Integer Partition Problem

The solution to the problem is a set of q-vectors denoted by $S(q, n)$. For example, if $n=8$ and $q=4$, then

$$
S(q, n)=\{(1,1,1,5),(1,1,2,4),(1,1,33),(1,2,2,3),(2,2,2,2)\} \quad 1 \leq q \leq n
$$

Define the an operator: $\Theta:$ I x (q -vectors) $\rightarrow(\mathrm{q}+1)$-vectors as

$$
a \Theta\left(a_{1}, a_{2}, \ldots, a_{q}\right)=\left(a, a_{1}+a-1, a_{2}+a-1, \ldots, a_{q}+a-1\right)
$$

Then $\mathrm{S}(\mathrm{q}, \mathrm{n})$ can be computed by the following recursive equation.

$$
S(q, n)=\left\{\begin{array}{lc}
(n) & \text { if } k=1 \\
(1,1, \ldots, 1) & \text { if } k=n \\
\bigcup_{b=1}^{k} b \Theta S(q-1,(n-b)-(b-1) *(q-1)) & \text { otherwise }
\end{array}\right.
$$

Integer Partition Problem (Cont.)

A Dynamic Programming Algorithm to Compute $S(q, m)(1 \leq q \leq m \leq n)$

For $\mathrm{i}=1$ to n

$$
S(i, i)=(1,1, \ldots, 1)
$$

For $\mathrm{j}=2$ to n

$$
S(1, j)=(j)
$$

For $\mathrm{i}=2$ to $\mathrm{n}-1$
For $\mathrm{j}=\mathrm{i}+1$ to n

$$
S(i, j)=\Phi
$$

	1	2			$\mathrm{n}-1$	n
1	$\mathrm{~S}(1,1)$					
2	$\mathrm{~S}(1,2)$	$\mathrm{S}(2,2)$				
$\mathrm{n}-1$	$\mathrm{~S}(1, \mathrm{n}-1)$	$\mathrm{S}(2, \mathrm{n}-1)$			$\mathrm{S}(\mathrm{n}-1, \mathrm{n}-1)$	
n	$\mathrm{S}(1, \mathrm{n})$	$\mathrm{S}(2, \mathrm{n})$			$\mathrm{S}(\mathrm{n}-1, \mathrm{n})$	$\mathrm{S}(\mathrm{n}, \mathrm{n})$

For $\mathrm{k}=1$ to $\lceil\mathrm{j} / \mathrm{i}\rceil$

$$
\mathrm{S}(\mathrm{i}, \mathrm{j})=\mathrm{S}(\mathrm{i}, \mathrm{j}) \cup \mathrm{k} \Theta S(i-1,(j-k)-(k-1) \times(i-1))
$$

MDBS: Preprocessing

Grouping: Each $\mathrm{RF}_{\mathrm{i}, \mathrm{j}}$ in $\mathrm{Cad}(\mathrm{i})$ uses i memory ports

$$
\operatorname{Cad}(i)=\left\{R F_{i, j} \mid j=1,2, \ldots, m(i)\right\}, i=1,2, \ldots N_{M P}
$$

Sorting:

$$
S\left(R F_{i, 1}\right)<S\left(R F_{i, 2}\right)<\ldots<S\left(R F_{i, m(i)}\right), i=1,2, \ldots N_{M P}
$$

Assumption:

$$
\operatorname{Area}\left(R F_{i, 1}\right)>\operatorname{Area}\left(R F_{i, 2}\right)>\ldots>\operatorname{Area}\left(R F_{i, m(i)}\right), i=1,2, \ldots N_{M P}
$$

MDBS: Algorithm

For a solution to $\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ GIP, compute sum of the largest RF areas $(S L A) \quad S L A=\sum_{1 S j \leq q} \operatorname{Area}\left(R F_{i, 1}\right)$ sum of the smallest RF areas (SSA) SSA $=\sum_{1 \leq j \leq q} \operatorname{Area}\left(R F_{i, m(j)}\right)$

If $S L A<S_{F P G A},\left\{R F_{i_{j}, 1} \mid 1 \leq \mathrm{j} \leq \mathrm{q}\right\}$ is a feasible solution.
If $S S A>S_{F P G A}$, there is no solution.
Otherwise, compute sum of the median RF areas (SMA)

$$
S M A=\sum_{\mid \leq j \leq q} \operatorname{Area}\left(R F_{i, m(j) / 2}\right)
$$

MDBS: Algorithm (Cont.)

If $S M A>S_{F P G A}$, then $\operatorname{Cad}\left(\mathrm{i}_{\mathrm{j}}\right)(1 \leq \mathrm{j} \leq \mathrm{q})$ can be divided into two parts:
$\operatorname{Cad}\left(i_{j}, 0\right)=\left\{R F_{i, k} \mid k=1,2, \ldots, m(i) / 2\right\} \quad \operatorname{Cad}\left(i_{j}, 1\right)=\left\{R F_{i, k} \mid k=m\left(i_{j}\right) / 2+1, \ldots, m\left(i_{j}\right)\right\}$
Picking q RF from these $2 \times \mathrm{q}$ sets gives $2{ }^{q}$ combinations. Then the searching problem can be broken up as $2 \mathrm{q}-1$ sub-problems with these combinations except one combination $\operatorname{Cad}\left(\mathrm{i}_{1}, 0\right), \ldots, \operatorname{Cad}\left(\mathrm{i}_{\mathrm{q}}, 0\right)$.

If $S M A \leq \operatorname{SFPGA}$, then $\operatorname{Cad}\left(\mathrm{i}_{\mathrm{j}}\right)(1 \leq \mathrm{j} \leq \mathrm{q})$ can be divided into two parts:
$\operatorname{Cad}\left(i_{j}, 0\right)=\left\{R F_{i_{i}, k} \mid k=1,2, \ldots, m(i) / 2-1\right\} \quad \operatorname{Cad}\left(i_{j}, 1\right)=\left\{R F_{i, k} \mid k=m\left(i_{j}\right) / 2, \ldots, m\left(i_{j}\right)\right\}$
Picking q RF from these $2 \times \mathrm{q}$ sets gives 2^{q} combinations. Then the searching problem can be broken up as $2^{q}-1$ sub-problems with these combinations except one combination $\operatorname{Cad}\left(\mathrm{i}_{1}, 1\right), \ldots, \operatorname{Cad}\left(\mathrm{i}_{\mathrm{q}}, 1\right)$.

MDBS: Example

Assume $\mathrm{S}_{\mathrm{FPGA}}=37$ and $(1,2)$ is a solution to GIP. Assume there are 6 RFs in $\mathrm{Cad}(1)$ and 5 RFs in $\mathrm{Cad}(2)$ Their areas are listed in the following table.

j	1	2	3	4	5	6
Area $\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	24	20	16	14	13	12
Area $\left(\mathrm{RF}_{2, \mathrm{j}}\right)$	35	29	26	22	18	NA

$S L A=24+35=59>S_{F P G A}$ and $S S A=12+18=30<S_{F P G A}$. As $S M A=16+26=42>S_{F P G A}$, three sub-problems are needed to consider.

MDBS: Example (Cont.)

$\operatorname{Sub}(1): \mathrm{j}$	1	2	3	4	5	6
$\operatorname{Area}\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	NA	NA	NA	14	13	12
$\operatorname{Area}\left(\mathrm{RF}_{2, \mathrm{j}}\right)$	NA	NA	NA	22	18	NA

For sub-problem (1), as $S L A=14+22=36$
$<\mathrm{S}_{\mathrm{FPGA}},\left(\mathrm{RF}_{1,4}, \mathrm{RF}_{2,4}\right)$ is a feasible solution

$\operatorname{Sub}(2): \mathrm{j}$	1	2	3	4	5	6
$\operatorname{Area}\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	NA	NA	NA	14	13	12
$\operatorname{Area}\left(\mathrm{RF}_{2, \mathrm{j}}\right)$	35	29	26	NA	NA	NA

For sub-problem (2), as $S S A=12+26=38$
$>\mathrm{S}_{\mathrm{FPGA}}$, there is no solution

$\operatorname{Sub}(3): \mathrm{j}$	1	2	3	4	5	6
$\operatorname{Area}\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	24	20	16	NA	NA	NA
$\operatorname{Area}\left(\mathrm{RF}_{2, j}\right)$	NA	NA	NA	22	18	NA

For sub-problem (3), $S L A=46$ and $S S A=34$. As $S M A=42>S_{F P G A}$, it splits into three sub-problems again

MDBS: Example (Cont.)

$\operatorname{Sub}(3-1): \mathrm{J}$	1	2	3	4	5	6
Area $\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	NA	NA	16	NA	NA	NA
Area $\left(\mathrm{RF}_{2, j}\right)$	NA	NA	NA	NA	18	NA

Sub-problem (3-1) provides another feasible solution $\left(\mathrm{RF}_{1,3}, \mathrm{RF}_{2,5}\right)$,

$\operatorname{Sub}(3-2):$ J	1	2	3	4	5	6
Area($\mathrm{RF}_{1, \mathrm{j}}$)	NA	NA	16	NA	NA	NA
Area($\mathrm{RF}_{2, \mathrm{j}}$)	NA	NA	NA	22	NA	NA

Sub-problems (3-2) has no solution.

$\operatorname{Sub}(3-3): \mathrm{J}$	1	2	3	4	5	6
$\operatorname{Area}\left(\mathrm{RF}_{1, \mathrm{j}}\right)$	24	20	NA	NA	NA	NA
$\operatorname{Area}\left(\mathrm{RF}_{2, \mathrm{j}}\right)$	NA	NA	NA	NA	18	NA

Sub-problems (3-3) has no solution.

The final solution for $(1,2)$ then will be one of the two feasible solutions that has maximum sum of speeds.

Efficiency of MDBS

	Complexity Assume $m(i)=m$, $\mathrm{N}_{\mathrm{MP}}=\mathrm{n}$	Example: $\mathrm{N}_{\mathrm{MP}}=4, \mathrm{~W}_{\text {PORT }}=32$, $\mathrm{B}_{\mathrm{DATA}}=8, \mathrm{~N}_{\mathrm{MW}}=1, \alpha_{\mathrm{W}}=1.0$, $\mathrm{R}_{\mathrm{WIN}}=3$ and $\mathrm{N}_{\mathrm{AP}}=9$	
	Space Size	Time(in Second)	
Naïve	$m^{n} \times n^{n}$	$2,880,952$	148.05
Exhaustive Search	m^{n}	9,982	0.526
Multi-Dimensional Binary Search	$\begin{cases}\theta\left(m^{\log _{2}\left(2^{n}-1\right)}\right) & \text { if } \mathrm{n}>1 \\ \theta\left(\log _{2} m\right) & \text { if } \mathrm{n}=1\end{cases}$	1,138	0.1288

Comparison	Space	Time
Naïve / Exhaustive Search	$2880952 / 9982=288$	$148.05 / 0.526=281$
Exhaustive Search / MDBS	$9982 / 1138=9$	$0.526 / 0.1288=3$

Efficiency of MDBS (Cont.)

Series 1: Multi-Dimensional Binary Search
Series 2: Exhaustive Search

