
Developing Robot Programming Lab Projects

Xuejun Liang
Department of Computer Science, Jackson State University, Jackson, MS, USA

Abstract - Robotics has played an important role in
educations at different levels. But, robotics education at the
college level is still ad-hoc. Many researchers have developed
many great robotics course materials including lab projects.
However, those materials are for teaching students at elite
Research I universities rather than underrepresented students
at Historically Black College and Universities (HBCUs). This
paper presents ideas and details in adopting, revising, and
developing robot programming lab projects that are suitable
for underrepresented students at HBCUs.

Keywords: Robotics Education, Robot Programming,
Player/Stage, Tekkotsu

1 Introduction
 Teaching an upper-level undergraduate robotics course at
Historically Black Colleges and Universities (HBCUs) is
challenging. The lack of suitable teaching materials is one of
the biggest challenges, although there have been many great
efforts in developing such robotics courses. For example, a
Cognitive Robotics course has been developed at the Carnegie
Mellon University [8, 11]. There is also an excellent list of
robotics course materials [3]. But, those materials are
prepared for teaching students at elite Research I institutions
with a far more quick pace than in HBCU courses and were
taught more on independent learning than in-class learning
preferred by most HBCU students. Therefore, translating
those materials into HBCU courses and making them suitable
for HBCU students learning is necessary.

In addition, robot programming tasks in robotics competitions
held along with the Annual ARTSI Student Research
Conferences are valuable materials [1, 2]. But, it is difficult
for our students to complete the whole tasks from scratch and
without further detailed guidance, and therefore, there is a
need to revise them in order to make them become useful and
suitable robot programming lab projects.

In the rest of this paper, a brief overview of our robotics
course will be given in Section 2. Robot programming with
using the Player/Stage and with using the Tekkotsu will be
introduced in Section 3. Three robot programming projects
with using the Player/stage and two with using the Tekkotsu
will be discussed in Section 4 and Section 5, respectively.
The discussions for each project will focus on two aspects: 1.
task and detailed steps to guide students to accomplish it, and
2. necessary knowledge for completing the projects,

including programming skills, mathematical formulas,
algorithms, and issues regarding to failures and uncertainty.
Finally, a short discussion and conclusion is presented.

2 Overview of the Robotics Course
 The robotics course is designed as an elective course for
both senior undergraduate students and graduate students of
Computer Science. It covers major topics on intelligent
mobile robotics, including robot control architectures,
sensing, localization, navigation, planning, and uncertainty.
The course also reviews programming fundamentals in C++
language and introduces two robot programming software
packages: the Player/Stage and the Tekkotsu. Students are
evaluated on their homework assignments on major robotics
topics, robot programming projects, midterm examination,
and final examination. The course has been offered three
times in the fall semesters over the last three years. The robot
programming projects in each semester are updated with
adding and/or removing some projects. The three course
websites, one for each semester, are available to the public
[5].

The robot platform used in our robotics course is the iRobot
Create robot with the ASUS Eee PC on top of it [10]. As
mentioned above, two robot programming software packages
used in our robotics course are the Player/Stage [4, 9] and the
Tekkotsu [8, 11]. In this paper, five robot programming
projects will be discussed. Three of them are adopted and
revised from Prof. Parker’s robotics course entitled Software
for Intelligent Robots [7]. They are waypoint following with
using odometry data, targets searching and approaching by
using behavior coordinating, and metric path planning by
using wavefront algorithm. These three projects use the
Player/Stage. The other two projects are developed based on
the tasks in robotics competitions held along with the Annual
ARTSI Student Conferences [1, 2]. In these two projects, a
robot needs to navigate and localize itself within a maze, and
to announce detected objects and their locations in the maze.
But, the objects inside the maze and the navigation markers
on the walls of the maze are different in these two projects.

3 Robot Programming Platforms
 The iRobot Create is a popular mobile robot in robotics
education. It uses differential drive and equips buttons for
power, play, advance, and wheel drops (front, left, and right),
bumps (left and right), IR sensor, wall sensor, cliffs sensors
(left, front left, right, front right), encoders (distance, angle),

and Leds. An ASUS notebook computer sitting on top of
iRobot Create is functioned as the brain of the robot. The
Player/Stage and the Tekkotsu are installed on the ASUS
computer. int main(int argc, char *argv[])

{
 int randcount = 0;

3.1 Robot Programming with the Player/Stage
 As shown in Figure 1, Player server provides a network

interface to a variety of real or simulated robots and sensor
hardware. It commands robots and gets sensor data through
device-specific connections. User robot control programs
(clients) communicate with Player server through the TCP
connection and hence can run on any computer with a
network connection to the robot (Player server).

 double speed, turnrate;
 Vector random(0,0);

 PlayerClient robot("localhost");
 Position2dProxy pp(&robot, 0);

 pp.SetMotorEnable (true);
 while(true)
 {
 // update the proxies

robot.Read();

 // generate a random vector
 wander(randcount, random);

 // compute the speed and the turn rate
 translate(random, speed, turnrate);

 // command the motors
 pp.SetSpeed(speed, turnrate);
 }
}

Figure 1: Player System Structure

Stage simulates a population of mobile robots moving in and
sensing a two-dimensional bitmapped environment. Various
sensor models are provided, including sonar, scanning laser
rangefinder, pan-tilt-zoom camera with color blob detection
and odometry. Stage devices present a standard Player
interface. Few or no changes are required to move between
simulation and hardware.

Programming with the Player/Stage, users need to provide
two important files: world file and configuration file. The
world (.world) file is needed when doing simulation using
Stage. It describes things available in the world, including
robots, items, and layout of the world. The configuration
(.cfg) file contains the robot information called drivers and
items in the world file if the client code interacts with them.
The real robot drivers are needed to build in Player already
and the simulation driver is always Stage.

The user robot control program is a client of the Player
server. The client code receives inputs from sensors and
controls hardware on robot through so called proxies. So
learning proxies is needed to create client codes. Example 1
lists the main function of a client code in C++, which drivers
the robot randomly without stop. This code shows a typical
program structure of a client code, in which robots are
defined and connected to the device proxies, and then in a
control loop, sensing and acting interact with proxies. In the
control loop of this example, the client code updates the
proxies, generates a new random vector of distance and

direction of motion every 3 seconds, and then translates it to a
speed and a turn rate to drive the robot

command

command

Player (Server)

Real or Simulated
Robot

Robot Control
Program (Client)

data

data
TCP Connection

Device Specific Connection

Example 1: Main Function of Random Walk

Note that the control loop runs at about 10Hz, so 30 loop
iterations is about 3 seconds. Hence, the wander function
generates a new random vector when it is called every 30
times. This is implemented by using the function parameter
randcount. Also note that the translate function applies the
servo-loop control rules to compute the speed and the turn
rate based on the distance and the direction of motion. In this
example, it could be simple if the wander function generates a
speed and a turn rate directly without using the translate
function. But, when more robot behaviors, such as avoid
obstacles, are needed, each behavior only needs to produce a
vector of distance and direction of motion. Then, vectors
from each behavior can be combined together as a single
vector by using weighted vector addition.

3.2 Robot Programming with the Tekkotsu
 Tekkotsu is an application development framework for

mobile robots. It provides (1) lower level primitives for
sensory processing, smooth control of effectors, and event-
based communication, (2) higher level facilities, including an
hierarchical state machine formalism for managing control
flow in the application, a vision system, and an automatically
maintained world map, (3) housekeeping and utility functions,
such as timers and profilers, and (4) the newly added
Tekkotsu crew [12], which enables programmers to use the
built-in higher level robotic functions such as map-making,
localization, and path planning.

Tekkotsu is object-oriented, making extensive use of C++
templates, multiple inheritance, and polymorphism (operator
overloading). To write a robot control program, users need to
define subclasses that inherit from the Tekkotsu base classes,
and override any member functions requiring customization.

Two types of fundamental classes in Tekkotsu are behaviors
and events. Users need to know the way to response or act
when a behavior is constructed, activated, and deactivated, the
way for a behavior to listen to events and to process events,
and the ways to construct a state machine in Tekkotsu. Users
also need to know the concepts of generator, source, and type
of an event. Furthermore, when using the Tekkotsu crew,
users need to know how to use different types of maps, how
to localize the robot, how to detect and/or move to an object
of interest, and how to get the location and shape information
of objects of interest.

 $

nodeclass Randomwalk : StateNode {

 $nodeclass RandomNode: StateNode : {
 Vector random;
 virtual void doStart() {
 wander(random);
 postStateSignal<Vector>(random);
 }

 }

 $nodeclass TranslateNode: StateNode : {
 Vector random, result;
 double speed, turnrate;
 virtual void doStart() {
 random = extractSignal<Vector>(event);
 translate(random, speed, turnrate);
 result.setVector(speed, turnrate);
 postStateSignal<Vector>(result);
 }

 }

 $nodeclass DriveNode : WalkNode : {
 Vector result;
 virtual void doStart() {
 result = extractSignal<Vector>(event);
 double speed = result.getMagnitude();
 double turnrate = result.getDirection();
 setVelocity(speed, 0, turnrate);
 }

 }

 virtual void setup() {
 $statemachine {
 random: RandomNode
 translate: TranslateNode

 drive: DriveNode;

 random =S<Vector>=> translate
 translate =S<Vector>=> drive
 drive =T(3000)=> random
 }
 }
}

;

REGISTER_BEHAVIOR(Randomwalk);

Example 2: State Machine of Random Walk

In a Tekkotsu state machine, each state has an associated
action: speak, move, etc. and transitions are triggered by
sensory events, timers, or user’s signals. State nodes are
behaviors. Entering a state is activating it, and leaving a state
is deactivating it. Transitions are also behaviors. A transition
starts to work whenever its source state node becomes active.
Transitions listen to sensors, timer, or other events, and when
their conditions are met, they fire. When a transition fires, it
deactivates its source node(s) and then activates its destination
node(s).

A shorthand notation is used instead of C++ code to build
state machines. The shorthand includes the state node
definition, the transition definition, and the state node class
definition. The shorthand is turned into C++ by a state
machine compiler.

Example 2 lists the major part of a Tekkotsu state machine
code of random walk. This application defines three state
node classes and a state machine with three state nodes and
three transitions. The random node generates a random vector
of distance and direction of motion and then send the vector
to the translate node, which computes a vector of speed and
turn rate and then send the vector to the drive node, which
drives the robot with the speed and turn rate for three second
(3000 ms) and then transits back to the random node. Note
that this application program has the same behavior as the
client code in Example 1.

In addition to the concepts mentioned above, the following
three basic skills of programming with the Tekkotsu are very
important: (1) how to transit from one state to multiple states
simultaneously so as to support parallel actions or behaviors,
(2) how to transit from one state to one of multiple states
based on different conditions so as to make a conditional
transition, and (3) how to pass and/or share data among states
so as to provide approaches of the data flow and the memory.

4 Projects with Using the Player/Stage
 This section will present details of the three robot
programming projects with using the Player/Stage. The three
projects are Waypoint following, target searching, and path
planning.

4.1 P1: Waypoint Following
 The task of this project is to read a sequence of waypoints

from a data file and then drive the robot to each waypoint one
after another. The project is required to use the robot’s
odometry data and the servo-loop control approach. The
following steps will guide students walking through the
project.

1. Give students a skeleton world file and let them add details
in the given file according to the requirements such as
world size, simulation window size, etc.

2. Give students a skeleton client code which provides the
program structure. The client program gets a sequence of
waypoints from a file by calling the getWaypoints function
and then enters an outer loop to iterate through each
waypoint. The inner loop is a control loop to drive the
robot to a waypoint, which is very similar to the control
loop in Example 1. But, the loop will now terminate after
the robot reaches to the waypoint and the wander function
in Example 1 is now replaced by the gotoWaypoint
function. Students only need to complete the following
three C++ functions:

• getWaypoints. It reads a sequence of waypoints from a
data file and store them into a queue.

• gotoWaypoint. It computes the distance and angle from
the robot's current pose to the waypoint. If the distance
is small enough, then return true. This will indicate that
the robot has reached the waypoint. Otherwise, return
false.

• translate. It is the same as the one in Example 1.

Please note that in order to help our students to complete
these three functions, several points are worth to mention.
First, students need to have C++ programming skills on File
I/O and using the queue data structure, and understand the
call-by-value and call-by-reference. Second, students need to
know how to obtain the robot’s current pose from the robot’s
odometry (encoder) data. Third, students need to know how to
compute the distance between two points, the slope of a
straight line, and the angle between two lines, and understand
the difference between degree and radian. Fourth, students
need to learn the rule-based servo-loop control approach in
order to determine an updated speed and turn rate to drive the
robot based on the distance and angle between robot and
waypoint.

The second task of this project is, instead of simulation, to
drive a real iRobot Create robot to follow a square path by
using the same client program. Students are also asked to
measure the odometry error and make changes to their client
code to improve the performance. This exercise makes
students get better understanding of uncertainty of sensory
data.

4.2 P2: Target Searching
 This project will generate robot control by sequencing

and combining three behaviors: wander, avoid obstacles, and
go to beacons. The final robot behavior should cause the
robot to wander around avoiding obstacles until it detects a
(for graduate students, previously unvisited) beacon, then
move to the location of the beacon. Once the beacon is
reached, the robot should go back into wander mode to search
for another beacon. This will repeat infinitely. The following
steps will guide students walking through the project.

1. Give students a skeleton world file and let them add details
for defining and creating beacons and robot.

2. Give students a skeleton client code which provides the
program structure, which is very similar to Example 1. In
the control loop, after updating the proxies, three
functions: wander, avoidObstacles, and gotoBeacon are
called to active the three behaviors. Then, if no beacon is
found, combine (weighted vector sum) the outputs from
wander and avoidObstacles to get a single output vector,
otherwise, combine outputs from gotoBeacon and
avoidObstacles. Finally, the translate function is called to
get a speed and a turn rate to drive the robot. Students only
need to complete the following three C++ functions:

• wander. It is the same as the one in Example 1.

• avoidObstacles. It generates a vector of distance and
direction of motion to avoid the obstacle, if there is an
obstacle in front detected by using laser scanner.
Otherwise, it generates a zero vector. Note that once
starting avoiding, it is needed to continue avoiding for
two seconds (the control loop runs at about 10Hz, so 20
loop iterations is about 2 second.)

• gotoBeacon. It returns true whenever a (for graduate
students, unvisited) beacon is detected by using Fiducial
detector. Otherwise, return false. When a (for graduate
students, unvisited) beacon is detected, it computes a
vector of distance and angle from the robot’s current
pose to the beacon.

Note that the translate function has been implemented in P1.
The function to combine (weighted sum) two vectors is given.
In order to help our students to complete these three C++
functions, several points are worth to mention. First, students
need to know how to produce a random number in a given
range and how to do the coordinate transformation (rotation
and shift) between the world coordinate and the robot’s
coordinate. Second, students need to know the
implementation skills for the wander function to generate a
new random vector when it is called every 30 times and for
the avoidObstacle function to continue generating the same
vector for 20 times once starting avoiding. Third, students
need to know how to use the list data structure in C++.

4.3 P3: Path Planning
 The task of this project is to implement the wavefront

path planer. The path planner accepts as input a user's goal
point and generates the waypoints of a path from a given
starting point to the goal point. Then, the avoid obstacles
behavior and the go to waypoint behavior from the previous
projects are used to drive a robot to follow the path. The
following steps will guide students walking through the
project.

1. Give students a skeleton world file and let them fill in
information for simulation window and map.

2. Give students a skeleton code of the wavefront path
planner, which provides all detailed implementation of the
planner except the following three functions, which are
left for the student implementation.

• grow. It grows the obstacles in the grid map for a single
step, i.e. one grid cell farther. It scans the grid cells. If a
cell is occupied, then mark the unoccupied neighbors of
the cell as occupied.

• propagate. It propagates the wavefront one grid cell
farther. It starts from the grid cells with value i and the
propagated cells get the value i+1. If the cell of robot’s
starting point has the same value i, then the wavefront
propagation should be over, otherwise, try to propagate
the wavefront to its neighbors. If there is no room to

propagate the wavefront, then the robot’s goal point is
unreachable; otherwise, the wavefront function can be
called again and starts from the grid cells with value i+1.

• nextWaypoint. It computes the next waypoint. The next
waypoint is a neighboring cell of the current waypoint
and its value is 1 less than the value of the current
waypoint cell. This function is called first with the
current waypoint equal to the robot’s starting point. It is
called continuously until the new waypoint is the goal
point.

Note that the implemented portion of the planner for students
includes the conversion between the pixel map representation
and the grid map representation of an image, the conversion
between the world coordinate and the image coordinate, and
the waypoints relaxing. In order to help our students to
complete the three functions, two points are still needed to
make. First, students need to know the grid cell representation
of an image, the process of scanning the grid cells, and how to
process the edge cells and corner cells easily. Second,
students need to know what is the logic that makes the
statement “there is no room to propagate the wavefront” to be
true. In addition, students really need to pay attention to array
boundaries.

5 Projects with Using the Tekkotsu
 This section will present details of the two robot
programming projects with using the Tekkotsu. These two
projects have the same task, which is locating objects inside a
maze.

5.1 P4: Locate Objects Inside a Maze
 The task of this project is taken from the robotics

competition held along with the 2nd Annual ARTSI Student
Research Conference [1]. It is to get an iRobot Create/ASUS
robot to navigate and localize itself within a maze, to
announce detected objects and their locations in the maze.

Figure 2: E-Maze with 8 Navigation Markers

The maze is shaped like the letter E as shown in Figure 2: a
long corridor with three alcoves branching off from it. There

is a bicolor marker at each end of each alcove or corridor, for
a total of 8 markers: NE, N, NW, W, SW, S, SE, and E.
Objects placed in the alcoves will be red, blue, or green balls,
one per alcove. The project is graded on visiting each alcove
of the maze, announcing detected objects and their locations,
delivering a final report, and the overall run time.

This project is divided into three parts: (1) Travel though the
maze by modifying the “following wall” behavior, (2) Travel
though the maze and announce the balls the robot detects, and
(3) Travel though the maze and report the balls the robot
detects and their locations.

In Part 1, students need first to run a sample Tekkotsu’s wall
following program. Students will notice that the robot will not
able to follow the wall unless its right side is placed near a
wall, and the robot will not stop. Then, students are required
to modify the sample code so that the robot will perform (a)
go to a wall, (b) follow the wall, and (c) stop after a while. So
the robot can travel through the maze along the walls
regardless where the robot is placed inside the maze. Note
that a state machine diagram to accomplish this task is given
to students.

In Part 2, a sample Tekkotsu state machine code of looking
for balls is given to students. This behavior will announce the
balls in front of the robot. Students need to test the code with
several runs, each run with different sets of color balls and
different lighting conditions. Students may need to change the
ASUS camera settings through Tekkotsu. Then, students are
asked to add the looking for balls behavior in the state
machine code in Part 1. So a robot can look for balls while it
travels through the maze. Note that looking for balls and
traveling through the maze are two parallel behaviors and the
former behavior will send a signal to the latter behavior to
stop the robot after the robot finds out the three balls. A state
machine diagram to accomplish this task is given to students.

Please note that the robot may see the same ball several times.
So the robot must have memory to remember which ball it has
already seen. Meanwhile the robot should also remember the
ordering in which it sees each of the three balls. To this end, a
scheme of encoding the three colors is provided to students.
In this scheme, Red is labeled as 1, Blue is 2, and Green is 4.
A set of colors, for example, {Red, Green} will be labeled as
5 (1+4). A pair of colors, for example, (Blue, Green) will be
labeled as 24 (2×10+4). A 3-tuple of colors, for example,
(Blue, Green, Red) will be labeled as 241 (2×100+4×10+1).

WS

N

S

W E

EN

ES

WN

In Part 3, a sample Tekkotsu state machine code of visiting
markers is given to students. In this behavior, the robot will
search for a bicolor marker by turning in its place and then
move towards the marker; if the robot cannot find a marker
after a while, it will move forward. In both cases, the robot
will move forward and hit a wall of the maze. Students need
to test this code first with the robot placed in different
locations inside the maze and different lighting conditions.
Students may need to change the ASUS camera settings.

Then, students are asked to modify the sample state machine
code so that the robot will only find the bicolor marker at
south, at southwest, at west, or at northwest. This means that
the markers at the remaining four locations are ignored.
Finally, students are asked to add the modified visiting marker
behavior into the state machine code in Part 2. Then, students
need to modify the announcement and the final report to
include the location information of the detected balls. Note
that the first ball the robot sees must be in the south alcove,
the second must in the middle alcove, and the third must be in
the north alcove, if one of the four bicolor markers at south,
southwest, west, or northwest is found.

In addition to the above guidance, students must have basic
object-oriented programming skills such as deriving a
subclass and instantiating a class. Students must also learn
Tekkotsu programming basics: behaviors, event, predefined
state node classes and transition classes, and state machine
formulations and semantics. Moreover, students need to know
how to deal with uncertainty and failure. For example, bicolor
markers are difficult to detect (false negative) and background
blobs are easily recognized as a color ball (false positive).

5.2 P5: Another Version of P4
The task of this project is taken from the robotics

competition held along with the 3nd Annual ARTSI Student
Research Conference [2]. This task is the same as the one in
P4 except the bicolor makers are replaced by the AprilTags
[6] and the three color balls are replaced by three cubes with
each covered by different AprilTags. Note that there are 20
navigation markers (AprilTags) on the walls of the E-maze as
shown in Figure 3 so as to support a better result of the robot
localization.

Figure 3: E-Maze, Twenty Navigation Markers (0-19), Six
Waypoints (A-F), and World Coordinates of the Four Corners

In P4, each bicolor marker is treated as a topological
navigation marker and the measurements of the maze are not
used at all. On the other hand, in P5, a metric map of the
maze as shown in Figure 3 is used in the robot localization.
Meanwhile, moving robot to a particular waypoint inside the
maze can be done easily by calling a pilot function that is
newly added into Tekkotsu.

This project is divided into four parts: (1) Memorize and
report which object the robot has observed in each alcove, (2)
Look for the object in each alcove, (3) Drive robot to a
waypoint in the maze, and (4) Putting it together.

In Part 1, students need first to run a sample Tekkotsu’s pilot
demonstration program. Students can use commands provided
in this program to drive the robot forward or making a turn,
check the robot location, localize the robot, and look
AprilTags that are facing to the robot and report their IDs.

In this part, students are asked to add a command in this
sample code to report which object the robot has observed in
each alcove. Here, the robot needs to figure out which object
in which alcove. We assume that when the robot is seeing an
object in an alcove, it will also see at least one navigation
marker on the wall of the same alcove. This may generally not
be true. But, users can use commands to make the robot
facing to an object and at least one marker at the same time.
Note that students need to define three shared variables to
remember the objects the robot has observed in each alcove.

In Part 2, students are asked to add a command to look for an
object and its location. Now, we assume that the robot is
inside an alcove, but it may not face an object. This new
command allows the robot to look for an object for several
times by making several turns until it finds one as well as its
location or fails to find.

(-457.2, 457.2) (-457.2, -1524.0) South

x

y

(1981.2, 457.2) (1981.2, -1524.0)
North

(0.0, 0.0)
A B

C D

E F

1

2

3

4 5 6

7

8 9

10 11

12

13 14

15 16

17

18 19 0

In Part 3, students are asked to add a goto <x y> command to
drive the robot from its current position to location (x, y)
inside the maze. Please note that the world coordinates of
points in the maze should be used in the goto function. The
coordinates of the four corners are shown in Figure 3. Note
that the coordinates are using millimeters as measurement
unit. Students can use the built-in path planning and execution
function of the Tekkotsu pilot to implement the goto
command. Or, students can implement the goto function on
their own. In this case, we assume there is no obstacle in
between the robot current location and the target location.

Due to the uncertainty, the robot may not be able to be close
enough to the target location. In this case, the goto function
should redo itself again until the robot is close to the target
within a threshold distance (for example, 200 mm). If the
robot is still not able to reach the target after redoing 3 times,
the goto function should be stopped and return a failure.

Due to the same reason as above, the robot may hit walls
before reaching to the target. In this case, the robot should
backup a little bit and then the goto function should redo itself
again. If the robot is still not able to reach to the target after

redoing 3 times, the goto function should be stopped and
return a failure.

In Part 4, students are asked to put them together by creating
a node class that takes a role of subtask scheduler. For
example, a schedule can be goto A, goto B, look for object,
goto A, goto C, goto D, look for object, … and finally report
which object the robot has observed in each alcove. It is
obvious that this schedule will let the robot find the object at
each alcove, if each subtask is successfully executed.

6 Discussion and Conclusion
 Our robotics course has offered three times in the fall

semesters over three years starting from 2009. It covers all
major topics on intelligent mobile robots, including robot
control architectures, navigation, localization, planning,
sensing, and uncertainty. A primary component of this course
is robot programming. Over the three years of time, many
robot programming projects have been adopted, revised, and
developed for underrepresented students at HBCUs. In
addition to the major projects presented in this paper, we have
created several introductory projects in our robotics course for
learning the basics of the Player/Stage and the Tekkotsu.

Teaching robot programming is challenging. More in-class
teaching is always welcoming by students. Like most HBCUs,
we don’t have open labs and TAs for our robotics projects.
Sometimes, the instructor has to spend extra hours in the lab
to help students with their projects. Providing detailed and
intuitive guidance to students is important and neccessary.
Therefore, students will see the hope to complete the project
and then spend their time doing the project.

In our robotics courses in 2009 and 2010, we used both
Player/Stage and Tekkotsu. The first version of the project of
localizing objects in a maze was added into our 2010 robotics
course. But, we were left no time to do this project. In our
2011 robotics course, we used the Tekkotsu only. So, we got
time to cover the second version of the project of localizing
objects in a maze. Note that AprilTags are much easier to be
detected than bicolor markers. This makes the robot
localization more accurate. So, we can use the Tekkotsu built-
in robot localization function in the second version. But, we
can apply the method used in the first version to the second
version without using the robot localization.

Compared with the Tekkotsu, the Player/Stage provides more
general framework for robot programming. Users are easy to
start with it and to test their own algorithms. On the other
hand, the Tekkotsu builds a set of high-level interacting
software components to relieve a programmer of the burden
of specifying low-level robot behaviors [12]. This makes it
possible to teach and practice more on robotics rather than
programming details. But, there is a large learning curve to
master the Tekkotsu fundamentals and its high-level software
components. However, Tekkotsu is easy to use for the
demonstration of robotics concepts. Meanwhile, the 3-D

simulation software Mirage can be used along with the
Tekkotsu for the simulation.

Acknowledgments

This work was supported by National Science Foundation
award CNS-1042326. The author thanks Dr. David Touretzky
for his help on the Tekkotsu.

7 References
[1] ARTSI Alliance, 2010 Robotics Competition, Available at
http://artsialliance.org/2010-Robotics-Competition

[2] ARTSI Alliance. 2011 Robotics Competition. Available at
http://artsialliance.org/2011-Robotics-Competition

[3] A. Dollar, D. Rus, and P. Fiorini, Robotics Courseware,
Available at http://roboticscourseware.org

[4] B. Gerkey, R. Vaughan, K. Støy, A. Howard, G.
Sukhatme, and M. Mataric, Most Valuable Player: A Robot
Device Server for Distributed Control, Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2001), pp. 1226-1231, Wailea, Hawaii.

[5] X. Liang, Introduction to Robotics (Fall 2011, Fall 2010,
Fall 2009), Available at http://www.jsums.edu/robotics/

[6] E. Olson, AprilTag: A robust and flexible visual fiducial
system, Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2011), Shanghai, China,
May 2011.

[7] L. Parker, Software for Intelligent Robots, Available at
http://roboticscourseware.org/fullcourses/mikey-test-course

[8] E. J. Tira-Thompson, G. V. Nickens, and D. S. Touretzky,
Extending Tekkotsu to new platforms for cognitive robotics,
Proceedings of the 2007 AAAI Mobile Robot Workshop, pp.
47-51, Menlo Park, CA.

[9] C. Toby, M. Bruce, and G. Brian, Player 2.0: Toward a
Practical Robot Programming Framework, Proceedings of
the Australasian Conference on Robotics and Automation
(ACRA 2005), Sydney, Australia.

[10] D. S. Touretzky, iRobot Create/ASUS Notebook Platform
for Tekkotsu. Available at http://chiara-robot.org/Create/

[11] D. S. Touretzky, and E. J. Tira-Thompson, Tekkotsu: A
framework for AIBO cognitive robotics, Proceedings of the
Twentieth National Conference on Artificial Intelligence
(AAAI-05), volume 4, pp. 1741-1742. Menlo Park, CA, 2005.

[12] D. S. Touretzky, and E. J. Tira-Thompson, The Tekkotsu
“Crew” Teaching Robot Programming At A Higher Level,
Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-10), pp. 1908-1913, Atlanta,
GA, 2010.

http://artsialliance.org/2010-Robotics-Competition
http://artsialliance.org/2011-Robotics-Competition
http://roboticscourseware.org/
http://www.jsums.edu/robotics/
http://roboticscourseware.org/fullcourses/mikey-test-course
http://chiara-robot.org/Create/

	1 Introduction
	2 Overview of the Robotics Course
	3 Robot Programming Platforms
	3.1 Robot Programming with the Player/Stage
	3.2 Robot Programming with the Tekkotsu

	4 Projects with Using the Player/Stage
	4.1 P1: Waypoint Following
	4.2 P2: Target Searching
	4.3 P3: Path Planning

	5 Projects with Using the Tekkotsu
	5.1 P4: Locate Objects Inside a Maze
	5.2 P5: Another Version of P4

	6 Discussion and Conclusion
	7 References

