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Abstract - Robotics has played an important role in 
educations at different levels. But, robotics education at the 
college level is still ad-hoc. Many researchers have developed 
many great robotics course materials including lab projects. 
However, those materials are for teaching students at elite 
Research I universities rather than underrepresented students 
at Historically Black College and Universities (HBCUs). This 
paper presents ideas and details in adopting, revising, and 
developing robot programming lab projects that are suitable 
for underrepresented students at HBCUs. 
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1 Introduction 
  Teaching an upper-level undergraduate robotics course at 
Historically Black Colleges and Universities (HBCUs) is 
challenging. The lack of suitable teaching materials is one of 
the biggest challenges, although there have been many great 
efforts in developing such robotics courses. For example, a 
Cognitive Robotics course has been developed at the Carnegie 
Mellon University [8, 11]. There is also an excellent list of 
robotics course materials [3]. But, those materials are 
prepared for teaching students at elite Research I institutions 
with a far more quick pace than in HBCU courses and were 
taught more on independent learning than in-class learning 
preferred by most HBCU students. Therefore, translating 
those materials into HBCU courses and making them suitable 
for HBCU students learning is necessary.  

In addition, robot programming tasks in robotics competitions 
held along with the Annual ARTSI Student Research 
Conferences are valuable materials [1, 2]. But, it is difficult 
for our students to complete the whole tasks from scratch and 
without further detailed guidance, and therefore, there is a 
need to revise them in order to make them become useful and 
suitable robot programming lab projects. 

In the rest of this paper, a brief overview of our robotics 
course will be given in Section 2. Robot programming with 
using the Player/Stage and with using the Tekkotsu will be 
introduced in Section 3. Three robot programming projects 
with using the Player/stage and two with using the Tekkotsu 
will be discussed in Section 4 and Section 5, respectively. 
The discussions for each project will focus on two aspects: 1. 
task and detailed steps to guide students to accomplish it, and 
2. necessary knowledge for completing the projects, 

including programming skills, mathematical formulas, 
algorithms, and issues regarding to failures and uncertainty. 
Finally, a short discussion and conclusion is presented.  

2 Overview of the Robotics Course 
 The robotics course is designed as an elective course for 
both senior undergraduate students and graduate students of 
Computer Science. It covers major topics on intelligent 
mobile robotics, including robot control architectures, 
sensing, localization, navigation, planning, and uncertainty. 
The course also reviews programming fundamentals in C++ 
language and introduces two robot programming software 
packages: the Player/Stage and the Tekkotsu. Students are 
evaluated on their homework assignments on major robotics 
topics, robot programming projects, midterm examination, 
and final examination. The course has been offered three 
times in the fall semesters over the last three years. The robot 
programming projects in each semester are updated with 
adding and/or removing some projects. The three course 
websites, one for each semester, are available to the public 
[5].  

The robot platform used in our robotics course is the iRobot 
Create robot with the ASUS Eee PC on top of it [10]. As 
mentioned above, two robot programming software packages 
used in our robotics course are the Player/Stage [4, 9] and the 
Tekkotsu [8, 11]. In this paper, five robot programming 
projects will be discussed. Three of them are adopted and 
revised from Prof. Parker’s robotics course entitled Software 
for Intelligent Robots [7]. They are waypoint following with 
using odometry data, targets searching and approaching by 
using behavior coordinating, and metric path planning by 
using wavefront algorithm. These three projects use the 
Player/Stage. The other two projects are developed based on 
the tasks in robotics competitions held along with the Annual 
ARTSI Student Conferences [1, 2]. In these two projects, a 
robot needs to navigate and localize itself within a maze, and 
to announce detected objects and their locations in the maze. 
But, the objects inside the maze and the navigation markers 
on the walls of the maze are different in these two projects.  

3  Robot Programming Platforms 
 The iRobot Create is a popular mobile robot in robotics 
education. It uses differential drive and equips buttons for 
power, play, advance, and wheel drops (front, left, and right), 
bumps (left and right), IR sensor, wall sensor, cliffs sensors 
(left, front left, right, front right), encoders (distance, angle), 



and Leds. An ASUS notebook computer sitting on top of 
iRobot Create is functioned as the brain of the robot. The 
Player/Stage and the Tekkotsu are installed on the ASUS 
computer. int main(int argc, char *argv[]) 

{ 
  int randcount = 0; 

3.1 Robot Programming with the Player/Stage 
 As shown in Figure 1, Player server provides a network 

interface to a variety of real or simulated robots and sensor 
hardware. It commands robots and gets sensor data through 
device-specific connections. User robot control programs 
(clients) communicate with Player server through the TCP 
connection and hence can run on any computer with a 
network connection to the robot (Player server). 

 

 

 

 

 

 

  double speed, turnrate; 
  Vector random(0,0); 
 
  PlayerClient robot("localhost"); 
  Position2dProxy pp(&robot, 0); 
 
  pp.SetMotorEnable (true); 
  while(true) 
  { 
    // update the proxies 

robot.Read(); 
 

    // generate a random vector 
    wander(randcount, random);  
 
    // compute the speed and the turn rate 
    translate(random, speed, turnrate); 
 
    // command the motors 
    pp.SetSpeed(speed, turnrate); 
  } 
} 

Figure 1: Player System Structure 

Stage simulates a population of mobile robots moving in and 
sensing a two-dimensional bitmapped environment. Various 
sensor models are provided, including sonar, scanning laser 
rangefinder, pan-tilt-zoom camera with color blob detection 
and odometry. Stage devices present a standard Player 
interface. Few or no changes are required to move between 
simulation and hardware.  

Programming with the Player/Stage, users need to provide 
two important files: world file and configuration file. The 
world (.world) file is needed when doing simulation using 
Stage. It describes things available in the world, including 
robots, items, and layout of the world. The configuration 
(.cfg) file contains the robot information called drivers and 
items in the world file if the client code interacts with them. 
The real robot drivers are needed to build in Player already 
and the simulation driver is always Stage. 

The user robot control program is a client of the Player 
server. The client code receives inputs from sensors and 
controls hardware on robot through so called proxies. So 
learning proxies is needed to create client codes. Example 1 
lists the main function of a client code in C++, which drivers 
the robot randomly without stop. This code shows a typical 
program structure of a client code, in which robots are 
defined and connected to the device proxies, and then in a 
control loop, sensing and acting interact with proxies. In the 
control loop of this example, the client code updates the 
proxies, generates a new random vector of distance and 

direction of motion every 3 seconds, and then translates it to a 
speed and a turn rate to drive the robot 
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Example 1: Main Function of Random Walk 

Note that the control loop runs at about 10Hz, so 30 loop 
iterations is about 3 seconds. Hence, the wander function 
generates a new random vector when it is called every 30 
times. This is implemented by using the function parameter 
randcount. Also note that the translate function applies the 
servo-loop control rules to compute the speed and the turn 
rate based on the distance and the direction of motion. In this 
example, it could be simple if the wander function generates a 
speed and a turn rate directly without using the translate 
function. But, when more robot behaviors, such as avoid 
obstacles, are needed, each behavior only needs to produce a 
vector of distance and direction of motion. Then, vectors 
from each behavior can be combined together as a single 
vector by using weighted vector addition. 

3.2 Robot Programming with the Tekkotsu 
 Tekkotsu is an application development framework for 

mobile robots. It provides (1) lower level primitives for 
sensory processing, smooth control of effectors, and event-
based communication, (2) higher level facilities, including an 
hierarchical state machine formalism for managing control 
flow in the application, a vision system, and an automatically 
maintained world map, (3) housekeeping and utility functions, 
such as timers and profilers, and (4) the newly added 
Tekkotsu crew [12], which enables programmers to use the 
built-in higher level robotic functions such as map-making, 
localization, and path planning. 

Tekkotsu is object-oriented, making extensive use of C++ 
templates, multiple inheritance, and polymorphism (operator 
overloading). To write a robot control program, users need to 
define subclasses that inherit from the Tekkotsu base classes, 
and override any member functions requiring customization. 



Two types of fundamental classes in Tekkotsu are behaviors 
and events. Users need to know the way to response or act 
when a behavior is constructed, activated, and deactivated, the 
way for a behavior to listen to events and to process events, 
and the ways to construct a state machine in Tekkotsu. Users 
also need to know the concepts of generator, source, and type 
of an event. Furthermore, when using the Tekkotsu crew, 
users need to know how to use different types of maps, how 
to localize the robot, how to detect and/or move to an object 
of interest, and how to get the location and shape information 
of objects of interest. 

 $
 
nodeclass Randomwalk : StateNode { 

  $nodeclass RandomNode: StateNode : { 
    Vector random;          
    virtual void doStart() { 
      wander(random); 
      postStateSignal<Vector>(random); 
    } 

 

 

 

  
 
 } 

  $nodeclass TranslateNode: StateNode : { 
    Vector random, result;          
    double speed, turnrate; 
    virtual void doStart() { 
      random = extractSignal<Vector>(event); 
      translate(random, speed, turnrate); 
      result.setVector(speed, turnrate); 
      postStateSignal<Vector>(result); 
    } 
 
 
 } 

  $nodeclass DriveNode : WalkNode : { 
    Vector result; 
    virtual void doStart() { 
      result = extractSignal<Vector>(event); 
      double speed = result.getMagnitude(); 
      double turnrate = result.getDirection(); 
      setVelocity(speed, 0, turnrate); 
    } 
 
 
 } 

  virtual void setup() { 
    $statemachine { 
      random: RandomNode 
      translate: TranslateNode 
 
 
     drive: DriveNode; 

      random =S<Vector>=> translate 
      translate =S<Vector>=> drive 
      drive =T(3000)=> random 
    } 
  } 
}
 
; 

REGISTER_BEHAVIOR(Randomwalk); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 2: State Machine of Random Walk 

In a Tekkotsu state machine, each state has an associated 
action: speak, move, etc. and transitions are triggered by 
sensory events, timers, or user’s signals. State nodes are 
behaviors. Entering a state is activating it, and leaving a state 
is deactivating it. Transitions are also behaviors. A transition 
starts to work whenever its source state node becomes active. 
Transitions listen to sensors, timer, or other events, and when 
their conditions are met, they fire. When a transition fires, it 
deactivates its source node(s) and then activates its destination 
node(s). 

A shorthand notation is used instead of C++ code to build 
state machines. The shorthand includes the state node 
definition, the transition definition, and the state node class 
definition. The shorthand is turned into C++ by a state 
machine compiler. 

Example 2 lists the major part of a Tekkotsu state machine 
code of random walk. This application defines three state 
node classes and a state machine with three state nodes and 
three transitions. The random node generates a random vector 
of distance and direction of motion and then send the vector 
to the translate node, which computes a vector of speed and 
turn rate and then send the vector to the drive node, which 
drives the robot with the speed and turn rate for three second 
(3000 ms) and then transits back to the random node. Note 
that this application program has the same behavior as the 
client code in Example 1. 

In addition to the concepts mentioned above, the following 
three basic skills of programming with the Tekkotsu are very 
important: (1) how to transit from one state to multiple states 
simultaneously so as to support parallel actions or behaviors, 
(2) how to transit from one state to one of multiple states 
based on different conditions so as to make a conditional 
transition, and (3) how to pass and/or share data among states 
so as to provide approaches of the data flow and the memory. 

4 Projects with Using the Player/Stage 
 This section will present details of the three robot 
programming projects with using the Player/Stage. The three 
projects are Waypoint following, target searching, and path 
planning. 

4.1 P1: Waypoint Following 
 The task of this project is to read a sequence of waypoints 

from a data file and then drive the robot to each waypoint one 
after another. The project is required to use the robot’s 
odometry data and the servo-loop control approach. The 
following steps will guide students walking through the 
project. 

1. Give students a skeleton world file and let them add details 
in the given file according to the requirements such as 
world size, simulation window size, etc.  

2. Give students a skeleton client code which provides the 
program structure. The client program gets a sequence of 
waypoints from a file by calling the getWaypoints function 
and then enters an outer loop to iterate through each 
waypoint. The inner loop is a control loop to drive the 
robot to a waypoint, which is very similar to the control 
loop in Example 1. But, the loop will now terminate after 
the robot reaches to the waypoint and the wander function 
in Example 1 is now replaced by the gotoWaypoint 
function. Students only need to complete the following 
three C++ functions: 



• getWaypoints. It reads a sequence of waypoints from a 
data file and store them into a queue. 

• gotoWaypoint. It computes the distance and angle from 
the robot's current pose to the waypoint. If the distance 
is small enough, then return true. This will indicate that 
the robot has reached the waypoint. Otherwise, return 
false. 

• translate. It is the same as the one in Example 1. 

Please note that in order to help our students to complete 
these three functions, several points are worth to mention. 
First, students need to have C++ programming skills on File 
I/O and using the queue data structure, and understand the 
call-by-value and call-by-reference. Second, students need to 
know how to obtain the robot’s current pose from the robot’s 
odometry (encoder) data. Third, students need to know how to 
compute the distance between two points, the slope of a 
straight line, and the angle between two lines, and understand 
the difference between degree and radian. Fourth, students 
need to learn the rule-based servo-loop control approach in 
order to determine an updated speed and turn rate to drive the 
robot based on the distance and angle between robot and 
waypoint. 

The second task of this project is, instead of simulation, to 
drive a real iRobot Create robot to follow a square path by 
using the same client program. Students are also asked to 
measure the odometry error and make changes to their client 
code to improve the performance. This exercise makes 
students get better understanding of uncertainty of sensory 
data. 

4.2 P2: Target Searching 
 This project will generate robot control by sequencing 

and combining three behaviors: wander, avoid obstacles, and 
go to beacons. The final robot behavior should cause the 
robot to wander around avoiding obstacles until it detects a 
(for graduate students, previously unvisited) beacon, then 
move to the location of the beacon. Once the beacon is 
reached, the robot should go back into wander mode to search 
for another beacon. This will repeat infinitely. The following 
steps will guide students walking through the project. 

1. Give students a skeleton world file and let them add details 
for defining and creating beacons and robot. 

2. Give students a skeleton client code which provides the 
program structure, which is very similar to Example 1. In 
the control loop, after updating the proxies, three 
functions: wander, avoidObstacles, and gotoBeacon are 
called to active the three behaviors. Then, if no beacon is 
found, combine (weighted vector sum) the outputs from 
wander and avoidObstacles to get a single output vector, 
otherwise, combine outputs from gotoBeacon and 
avoidObstacles. Finally, the translate function is called to 
get a speed and a turn rate to drive the robot. Students only 
need to complete the following three C++ functions: 

• wander. It is the same as the one in Example 1. 

• avoidObstacles. It generates a vector of distance and 
direction of motion to avoid the obstacle, if there is an 
obstacle in front detected by using laser scanner. 
Otherwise, it generates a zero vector. Note that once 
starting avoiding, it is needed to continue avoiding for 
two seconds (the control loop runs at about 10Hz, so 20 
loop iterations is about 2 second.)  

• gotoBeacon. It returns true whenever a (for graduate 
students, unvisited) beacon is detected by using Fiducial 
detector. Otherwise, return false. When a (for graduate 
students, unvisited) beacon is detected, it computes a 
vector of distance and angle from the robot’s current 
pose to the beacon. 

Note that the translate function has been implemented in P1. 
The function to combine (weighted sum) two vectors is given. 
In order to help our students to complete these three C++ 
functions, several points are worth to mention. First, students 
need to know how to produce a random number in a given 
range and how to do the coordinate transformation (rotation 
and shift) between the world coordinate and the robot’s 
coordinate. Second, students need to know the 
implementation skills for the wander function to generate a 
new random vector when it is called every 30 times and for 
the avoidObstacle function to continue generating the same 
vector for 20 times once starting avoiding. Third, students 
need to know how to use the list data structure in C++. 

4.3 P3: Path Planning 
 The task of this project is to implement the wavefront 

path planer. The path planner accepts as input a user's goal 
point and generates the waypoints of a path from a given 
starting point to the goal point. Then, the avoid obstacles 
behavior and the go to waypoint behavior from the previous 
projects are used to drive a robot to follow the path. The 
following steps will guide students walking through the 
project. 

1. Give students a skeleton world file and let them fill in 
information for simulation window and map. 

2. Give students a skeleton code of the wavefront path 
planner, which provides all detailed implementation of the 
planner except the following three functions, which are 
left for the student implementation. 

• grow. It grows the obstacles in the grid map for a single 
step, i.e. one grid cell farther. It scans the grid cells. If a 
cell is occupied, then mark the unoccupied neighbors of 
the cell as occupied.  

• propagate. It propagates the wavefront one grid cell 
farther. It starts from the grid cells with value i and the 
propagated cells get the value i+1. If the cell of robot’s 
starting point has the same value i, then the wavefront 
propagation should be over, otherwise, try to propagate 
the wavefront to its neighbors. If there is no room to 



propagate the wavefront, then the robot’s goal point is 
unreachable; otherwise, the wavefront function can be 
called again and starts from the grid cells with value i+1. 

• nextWaypoint. It computes the next waypoint. The next 
waypoint is a neighboring cell of the current waypoint 
and its value is 1 less than the value of the current 
waypoint cell. This function is called first with the 
current waypoint equal to the robot’s starting point. It is 
called continuously until the new waypoint is the goal 
point. 

Note that the implemented portion of the planner for students 
includes the conversion between the pixel map representation 
and the grid map representation of an image, the conversion 
between the world coordinate and the image coordinate, and 
the waypoints relaxing. In order to help our students to 
complete the three functions, two points are still needed to 
make. First, students need to know the grid cell representation 
of an image, the process of scanning the grid cells, and how to 
process the edge cells and corner cells easily. Second, 
students need to know what is the logic that makes the 
statement “there is no room to propagate the wavefront” to be 
true. In addition, students really need to pay attention to array 
boundaries. 

5 Projects with Using the Tekkotsu 
 This section will present details of the two robot 
programming projects with using the Tekkotsu. These two 
projects have the same task, which is locating objects inside a 
maze. 

5.1 P4: Locate Objects Inside a Maze 
 The task of this project is taken from the robotics 

competition held along with the 2nd Annual ARTSI Student 
Research Conference [1]. It is to get an iRobot Create/ASUS 
robot to navigate and localize itself within a maze, to 
announce detected objects and their locations in the maze.   

 

 

 

 

 

 

 

 

 

Figure 2: E-Maze with 8 Navigation Markers 

The maze is shaped like the letter E as shown in Figure 2: a 
long corridor with three alcoves branching off from it. There 

is a bicolor marker at each end of each alcove or corridor, for 
a total of 8 markers: NE, N, NW, W, SW, S, SE, and E. 
Objects placed in the alcoves will be red, blue, or green balls, 
one per alcove. The project is graded on visiting each alcove 
of the maze, announcing detected objects and their locations, 
delivering a final report, and the overall run time. 

This project is divided into three parts: (1) Travel though the 
maze by modifying the “following wall” behavior, (2) Travel 
though the maze and announce the balls the robot detects, and 
(3) Travel though the maze and report the balls the robot 
detects and their locations. 

In Part 1, students need first to run a sample Tekkotsu’s wall 
following program. Students will notice that the robot will not 
able to follow the wall unless its right side is placed near a 
wall, and the robot will not stop. Then, students are required 
to modify the sample code so that the robot will perform (a) 
go to a wall, (b) follow the wall, and (c) stop after a while. So 
the robot can travel through the maze along the walls 
regardless where the robot is placed inside the maze. Note 
that a state machine diagram to accomplish this task is given 
to students.  

In Part 2, a sample Tekkotsu state machine code of looking 
for balls is given to students. This behavior will announce the 
balls in front of the robot. Students need to test the code with 
several runs, each run with different sets of color balls and 
different lighting conditions. Students may need to change the 
ASUS camera settings through Tekkotsu. Then, students are 
asked to add the looking for balls behavior in the state 
machine code in Part 1. So a robot can look for balls while it 
travels through the maze. Note that looking for balls and 
traveling through the maze are two parallel behaviors and the 
former behavior will send a signal to the latter behavior to 
stop the robot after the robot finds out the three balls. A state 
machine diagram to accomplish this task is given to students. 

Please note that the robot may see the same ball several times. 
So the robot must have memory to remember which ball it has 
already seen. Meanwhile the robot should also remember the 
ordering in which it sees each of the three balls. To this end, a 
scheme of encoding the three colors is provided to students. 
In this scheme, Red is labeled as 1, Blue is 2, and Green is 4. 
A set of colors, for example, {Red, Green} will be labeled as 
5 (1+4). A pair of colors, for example, (Blue, Green) will be 
labeled as 24 (2×10+4). A 3-tuple of colors, for example, 
(Blue, Green, Red) will be labeled as 241 (2×100+4×10+1). 
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In Part 3, a sample Tekkotsu state machine code of visiting 
markers is given to students. In this behavior, the robot will 
search for a bicolor marker by turning in its place and then 
move towards the marker; if the robot cannot find a marker 
after a while, it will move forward. In both cases, the robot 
will move forward and hit a wall of the maze. Students need 
to test this code first with the robot placed in different 
locations inside the maze and different lighting conditions. 
Students may need to change the ASUS camera settings.  

 



Then, students are asked to modify the sample state machine 
code so that the robot will only find the bicolor marker at 
south, at southwest, at west, or at northwest. This means that 
the markers at the remaining four locations are ignored. 
Finally, students are asked to add the modified visiting marker 
behavior into the state machine code in Part 2. Then, students 
need to modify the announcement and the final report to 
include the location information of the detected balls. Note 
that the first ball the robot sees must be in the south alcove, 
the second must in the middle alcove, and the third must be in 
the north alcove, if one of the four bicolor markers at south, 
southwest, west, or northwest is found.  

In addition to the above guidance, students must have basic 
object-oriented programming skills such as deriving a 
subclass and instantiating a class. Students must also learn 
Tekkotsu programming basics: behaviors, event, predefined 
state node classes and transition classes, and state machine 
formulations and semantics. Moreover, students need to know 
how to deal with uncertainty and failure. For example, bicolor 
markers are difficult to detect (false negative) and background 
blobs are easily recognized as a color ball (false positive).  

5.2 P5: Another Version of P4 
The task of this project is taken from the robotics 

competition held along with the 3nd Annual ARTSI Student 
Research Conference [2]. This task is the same as the one in 
P4 except the bicolor makers are replaced by the AprilTags 
[6] and the three color balls are replaced by three cubes with 
each covered by different AprilTags. Note that there are 20 
navigation markers (AprilTags) on the walls of the E-maze as 
shown in Figure 3 so as to support a better result of the robot 
localization.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3: E-Maze, Twenty Navigation Markers (0-19), Six 
Waypoints (A-F), and World Coordinates of the Four Corners  

In P4, each bicolor marker is treated as a topological 
navigation marker and the measurements of the maze are not 
used at all.  On the other hand, in P5, a metric map of the 
maze as shown in Figure 3 is used in the robot localization. 
Meanwhile, moving robot to a particular waypoint inside the 
maze can be done easily by calling a pilot function that is 
newly added into Tekkotsu.  

This project is divided into four parts: (1) Memorize and 
report which object the robot has observed in each alcove, (2) 
Look for the object in each alcove, (3) Drive robot to a 
waypoint in the maze, and (4) Putting it together. 

In Part 1, students need first to run a sample Tekkotsu’s pilot 
demonstration program. Students can use commands provided 
in this program to drive the robot forward or making a turn, 
check the robot location, localize the robot, and look 
AprilTags that are facing to the robot and report their IDs. 

In this part, students are asked to add a command in this 
sample code to report which object the robot has observed in 
each alcove. Here, the robot needs to figure out which object 
in which alcove. We assume that when the robot is seeing an 
object in an alcove, it will also see at least one navigation 
marker on the wall of the same alcove. This may generally not 
be true. But, users can use commands to make the robot 
facing to an object and at least one marker at the same time. 
Note that students need to define three shared variables to 
remember the objects the robot has observed in each alcove. 

In Part 2, students are asked to add a command to look for an 
object and its location. Now, we assume that the robot is 
inside an alcove, but it may not face an object. This new 
command allows the robot to look for an object for several 
times by making several turns until it finds one as well as its 
location or fails to find. 
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In Part 3, students are asked to add a goto <x y> command to 
drive the robot from its current position to location (x, y) 
inside the maze. Please note that the world coordinates of 
points in the maze should be used in the goto function. The 
coordinates of the four corners are shown in Figure 3. Note 
that the coordinates are using millimeters as measurement 
unit. Students can use the built-in path planning and execution 
function of the Tekkotsu pilot to implement the goto 
command. Or, students can implement the goto function on 
their own. In this case, we assume there is no obstacle in 
between the robot current location and the target location.  

Due to the uncertainty, the robot may not be able to be close 
enough to the target location. In this case, the goto function 
should redo itself again until the robot is close to the target 
within a threshold distance (for example, 200 mm). If the 
robot is still not able to reach the target after redoing 3 times, 
the goto function should be stopped and return a failure.  

Due to the same reason as above, the robot may hit walls 
before reaching to the target. In this case, the robot should 
backup a little bit and then the goto function should redo itself 
again. If the robot is still not able to reach to the target after 



redoing 3 times, the goto function should be stopped and 
return a failure. 

In Part 4, students are asked to put them together by creating 
a node class that takes a role of subtask scheduler. For 
example, a schedule can be goto A, goto B, look for object, 
goto A, goto C, goto D, look for object, … and finally report 
which object the robot has observed in each alcove. It is 
obvious that this schedule will let the robot find the object at 
each alcove, if each subtask is successfully executed. 

6 Discussion and Conclusion 
 Our robotics course has offered three times in the fall 

semesters over three years starting from 2009. It covers all 
major topics on intelligent mobile robots, including robot 
control architectures, navigation, localization, planning, 
sensing, and uncertainty. A primary component of this course 
is robot programming. Over the three years of time, many 
robot programming projects have been adopted, revised, and 
developed for underrepresented students at HBCUs. In 
addition to the major projects presented in this paper, we have 
created several introductory projects in our robotics course for 
learning the basics of the Player/Stage and the Tekkotsu. 

Teaching robot programming is challenging. More in-class 
teaching is always welcoming by students. Like most HBCUs, 
we don’t have open labs and TAs for our robotics projects. 
Sometimes, the instructor has to spend extra hours in the lab 
to help students with their projects. Providing detailed and 
intuitive guidance to students is important and neccessary. 
Therefore, students will see the hope to complete the project 
and then spend their time doing the project.  

In our robotics courses in 2009 and 2010, we used both 
Player/Stage and Tekkotsu. The first version of the project of 
localizing objects in a maze was added into our 2010 robotics 
course. But, we were left no time to do this project. In our 
2011 robotics course, we used the Tekkotsu only. So, we got 
time to cover the second version of the project of localizing 
objects in a maze. Note that AprilTags are much easier to be 
detected than bicolor markers. This makes the robot 
localization more accurate. So, we can use the Tekkotsu built-
in robot localization function in the second version. But, we 
can apply the method used in the first version to the second 
version without using the robot localization. 

Compared with the Tekkotsu, the Player/Stage provides more 
general framework for robot programming. Users are easy to 
start with it and to test their own algorithms. On the other 
hand, the Tekkotsu builds a set of high-level interacting 
software components to relieve a programmer of the burden 
of specifying low-level robot behaviors [12]. This makes it 
possible to teach and practice more on robotics rather than 
programming details. But, there is a large learning curve to 
master the Tekkotsu fundamentals and its high-level software 
components. However, Tekkotsu is easy to use for the 
demonstration of robotics concepts. Meanwhile, the 3-D 

simulation software Mirage can be used along with the 
Tekkotsu for the simulation. 
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