
1

Developing Robot
Programming Lab
Projects

Xuejun Liang
Department of Computer Science

Jackson State University
Jackson, MS, USA

FECS 2012

Outlines

A. Overview of the Robotics Course

B. Robot Programming with Player/Stage

C. Robot Programming with Tekkotsu

D. Robot Programming Projects
 P1. Waypoints Following

 P2. Target Searching

 P3. Path Planning

 P4. Localization and Navigation

 P5. Another Version of P4

E. Conclusion
FECS 2012

A. Course Overview

o CSC499/539 Introduction to Robotics.
 Elective course for

 Both senior undergraduate students and graduate students

o Prerequisites:
 CSC 325 Operating System

 CSC 323 Algorithm Design and Analysis

o Catalog Description
 Introduction to robotics and the key artificial intelligence

issues involved in the development of intelligent mobile
robotics, including software control architectures,
localization, navigation, sensing, planning, and uncertainty

FECS 2012

Course Overview (Cont.)

o Lectures (3 Hours)
 Covering major topics on AI mobile robotics

 Reviewing C++ and Introducing robot programming with

Player/Stage and Tekkotsu

o Homework Assignments
Assignments on major robotics topics

o Robot Programming Projects
 Five major robotics programming projects

 Real robot (iRobot Create) and simulation

FECS 2012

Course Overview (Cont.)

o Midterm and Final Examinations
o Required Textbook
 Introduction to AI Robotics, by Robin R. Murphy

o Reference Book
 The Robotics Primer, by Maja J Mataric
 Behavior-Based Robotics, by Ronald C. Arkin

o Course Website
 http://www.jsums.edu/robotics/

FECS 2012

iRobot Create/ASUS Netbook Platform

o Differential Drive
o Buttons
 Power, Play, Advance
Wheel Drops (Front,

Left, Right)
 Bumps (Left, Right)

o Sensors
Wall, IR
 Cliffs (Left, Front Left,

Right, Front Right)
 Encoders (Distance,

Angle)

o LedsFECS 2012

2

B. Player Sever for Robot Control

o Player provides a network
interface to a variety of real or
simulated robots and sensor
hardware.

o Player's client/server model allows
robot control programs to be
written in any programming
language and to run on any
computer with a network
connection to the robot

o Player supports multiple
concurrent client connections to
devices

Player
(Server)

Real or Simulated
Robot

Robot Control
Program
(Client)

command
data

command

data
TCP

Connection

Device
Specific

Connection

FECS 2012

Stage Simulator

 Sonar, scanning laser
rangefinder, pan-tilt-zoom
camera with color blob
detection and odometry

o Stage devices present a standard
Player interface.
 Few or no changes are

required to move between
simulation and hardware

o Stage simulates a population of mobile robots moving in
and sensing a two-dimensional bitmapped environment.

o Various sensor models are provided, including

FECS 2012

Two Important Files

o World (.world) file
Needed when doing simulation using Stage

 Things are available in the world, including robots, items,
and layout of the world

o Configuration (.cfg) file
 Robot information: Drivers

Real robot driver is build in Player already

Simulation driver is always Stage

 Items in .world file if your code interacts with them.

FECS 2012

Creating C++ Client Program

o Server/Client Control Structure
 Player is server, your program is client

Your code controls hardware on robot through something
called proxy.

o Program structure
 Include the Player header file

 Establish a Player client

 Connect your code to the device proxies

 Control Loop (Interacting with Proxies)

FECS 2012

int main(int argc, char *argv[])
{

int randcount = 0;
double speed, turnrate;
Vector random(0,0);

PlayerClient robot("localhost");
Position2dProxy pp(&robot, 0);

pp.SetMotorEnable (true);
while(true)
{

// update the proxies
robot.Read();

// generate a random vector
wander(randcount, random);

// compute the speed and the turn rate
translate(random, speed, turnrate);

// command the motors
pp.SetSpeed(speed, turnrate);

}
}

An Example of
Client Program:
Random Walk

FECS 2012

C. Tekkotsu Framework

o It provides lower level primitives for
 Sensory processing,
 Smooth control of effectors, and
 Event-based communication

o It provides higher level facilities, including
A hierarchical state machine formalism for managing

control flow in the application,
A vision system,
An automatically maintained world map, and
Newly added Tekkotsu crew, including localization and

path planning, etc.
o It provides housekeeping and utility functions, such as

timers and profilers
FECS 2012

3

Programming with Tekkotsu

o Application programmer simply define subclasses that
inherit from the Tekkotsu base classes, and override any
member functions requiring customization

o Behaviors and Events
 Behaviors: Construct, Activate, Deactivate, Listen Events,

Process Events,
 Events: Generator, Source, Type

o State Machine
 Robot moves from state to state.
 Each state has an associated action: speak, move, etc.

 Transitions triggered by sensory events or timers.
FECS 2012

Tekkotsu State and Transition

o State nodes are behaviors
 Enter (Activate), Leave (Deactivate), Listen Events,

Process Events

o Transitions are also behaviors
A transition starts to work whenever its source state node

becomes active.

 Transitions listen for sensor, timer, or other events, and
when their conditions are met, they fire.

When a transition fires, it deactivates its source node(s) and
then activates its destination node(s).

FECS 2012

Shorthand Notation

o A shorthand notation is used instead of C++ code to build
state machines. The shorthand is turned into C++ by a state
machine compiler.

o Node definition:
label: ClassName`(args)[inits]

o Transition definition:
=label:TransAbbrev`(args)[inits]=>

o Node Class definition
$nodeclass ClassName(parameters) : ParentName(args) :
initializers : methodname {

body
} FECS 2012

An Example: Annoying Dog
#include "Behaviors/StateMachine.h"

$nodeclass AnnoyingDog : StateNode {
virtual void setup() {
$statemachine{
launch: StateNode
bark: SoundNode($, "barkmed.wav")
howl: SoundNode($, "howl.wav")
wait: StateNode

launch =N=> bark
bark =T(5000)=> howl
bark =B(RobotInfo::GreenButOffset)

[setSound("ping.wav")]=> wait
wait =T(15000)=> bark
howl =C=> wait

}
}

}

REGISTER_BEHAVIOR(AnnoyingDog);
FECS 2012

Advanced Knowledge of Tekkotsu

o Transit from one state to multiple states
simultaneously so as to support parallel actions or
behaviors,

o Transit from one state to one of multiple states based
on different conditions so as to make a conditional
transition, and

o Pass and/or share data among states so as to provide
approaches of the data flow and the memory

FECS 2012

D. Robot Programming Projects

Projects
o P1. Waypoints Following
o P2. Target Searching
o P3. Path Planning
o P4. Localization and Navigation
o P5. Another Version of P4

Discussing Aspects
1. Task and steps to accomplish the task,
2. Programming model (structure) and skills,
3. Concepts, algorithms, and mathematical formulas,
4. Issues regarding to failures, uncertainty, and real-time

constraints
FECS 2012

4

P1. Waypoint Following

Read
Waypoints
From a File

Translate

Speed,
Turn rate

Distance,
Angle

Pilot

Set of Waypoints

Go to
Waypoint

Next Waypoint Waypoint is reached

1. Following waypoints
with simulation

2. Following a square path
with iRobot Create and
measure its odometry errorodometry error

FECS 2012

Waypoint Following (Cont.)

o Read waypoints from file
 File I/O and queue data structure

o Go to waypoint
Get the current pose of the robot
 Compute how far the robot to the waypoint
 Compute the angle of the robot to the waypoint
 Return true if the robot has reached the waypoint,

otherwise, return false
o Translate
Use servo-loop control approach to determine an updated

speed and turn rate to drive the robot based on the distance
and angle between robot and waypoint.

FECS 2012

Waypoint Following (Cont.)

o Uncertainty
Odometry error

 Wheel slippage and discretization of the continuous wheel rotations

o Mathematical formulas and Concepts
 Compute distance between two points
 Compute slope of a line
 Compute angle between two lines
Angle range: [-π, π]
Degree V.S. Radian

o Programming skills
 File I/O operations and queue operations
 Pass-by-value V.S. Pass-by-reference

FECS 2012

P2. Target Searching

Avoid
Obstacles

Laser

Fiducial
detector Go to

Beacons

Wander

Sequencer

C
om

bine

Translate

Steering,
Velocity

Vector

Vector

Vector

Vector

Vector

Vector

Detect beacon

Note: Vector is a pair of distance and direction
FECS 2012

Target Searching (Cont.)

o Avoid obstacles
 Check to see if there is an obstacle in front using laser

scanner.
 If an obstacle is found, set up a distance and an direction to

go for about 2 seconds to avoid the obstacle.
Otherwise, set distance=0 and direction=0.

o Wander
Generate a random distance and a random direction every 3

seconds
o Combine
 Compute weighted sum of the two input vectors

o Translate
 Same as in P1

FECS 2012

Target Searching (Cont.)

o Go to beacon
 Check to see if there is a beacon using Fiducial detector
 If a beacon is found
Compute how far the robot to the beacon
Compute the angle of the robot to the beacon
Computer the world coordinates of the beacon
 If a beacon is not too close (and has not been visited

yet), return true, Otherwise, return false
Otherwise, return false

o Sequencer
 If a beacon is detect, use avoid obstacle and go to beacons
Otherwise, use avoid obstacle and wanderFECS 2012

5

Target Searching (Cont.)

o Mathematical formulas and Concepts
Generate a random number in a given range
 Compute distance and angle
 Coordinate Transformation (Rotation and Shift)
Vector addition

o Real-time constraints
 Set up a distance and an direction to go for about 2 seconds
Generate a random distance and a random direction every 3

seconds
o Programming skills
 List operations
Vector class
 Pass-by-value V.S. Pass-by-referenceFECS 2012

P3. Path Planning

Avoid
Obstacles

Wavefront
Path Planer

Combine Translate

Steering,
Velocity

Vector

Vector

Vector

Goal

Pilot

Set of Waypoints

Go to
Waypoint

Next Waypoint Waypoint is reached

Laser

The path planner accepts as
input a user's goal point and
generate the waypoints of a
path to the user's goal point

FECS 2012

Wavefront Path Planer

o Read the input map into the grid map
o Convert starting and goal points from the world coordinate into the image

coordinate
o Check if the goal point is in the wall
o Label the goal point on the grid map
o Grow the grid map a few times
o Propagate the wavefront until reaching to starting point or until the

wavefront can not be propagated
o Compute waypoints
o Relax waypoints
o Store waypoints in the grid map
o Print the grid map into the output map
o Convert waypoints from the image coordinate into the world coordinate

and then return them
FECS 2012

Wavefront Path Planer (Cont.)

o The occupancy grid (Study the functions inputMap and
outputMap)
 The inputMap function reads in the map into a two-

dimensional binary occupancy grid array in which 0’s
represent free space and 1’s represent obstacles (walls).

 The outputMap function writes out the occupancy grid
information into a scaled map, which can be used to
visualize your planner’ results

o The conversion between the World Coordinates and the
Image Coordinates (Study the functions computeHW and
computeXY)

FECS 2012

Wavefront Path Planer (Cont.)

o The function grow()
 This function grows the obstacles in the grid map for a

single step, i.e. one grid cell farther

o The function nextWaypoint(…)
 This function computes the next waypoint.

 The next waypoint is a neighboring cell of the current
waypoint and its value is 1 less than the value of the current
waypoint cell.

 This function is called first with the current waypoint equal
to the robot’s starting point.

 It is called continuously until the new waypoint is the goal
point. FECS 2012

Wavefront Path Planer (Cont.)

o The function propagate(…)
 This function propagates the wavefront one grid cell

farther. It starts from the grid cells with value i and the
propagated cells get the value i+1.

 If the cell of robot’s starting point has the same value of the
start parameter, then the wavefront propagation should be
over (done = 1).

Otherwise, propagate the wavefront to its neighbors.

 if there is no room to propagate the wavefront, then the
robot’s goal point is unreachable (done = 2);

 otherwise, the wavefront can be propagated continuously
(done = 0) FECS 2012

6

Wavefront Path Planer (Cont.)

o Mathematical formulas and Concepts
Grid map representations

 Conversion between the World Coordinates and the Image
Coordinates

 The wavefront path planning algorithm

o Programming skills
Queue

 Two-dimensional array

 Pass-by-value V.S. Pass-by-reference

FECS 2012

P4. Localization and Navigation

o This is the task for the
2010 Robotics Competition
held along with the 2nd

Annual ARTSI Student
Research Conference

o The task is to get a robot to
localize itself within a
maze, navigate efficiently
between locations, observe
objects in the maze, and
report on what it has
observed.

WS

N

S

W E

EN

ES

WN

FECS 2012

P4 (Cont.): Milestones

o What students need to know first
 Following wall
 Recognizing color balls (objects in the maze)
Detecting and visiting bi-color navigation marks
Memorizing what objects have been seen already

o Milestones
 Travel though the maze by using “following wall”.

Able to start “follow wall behavior” and able to stop
 Travel though the maze and report detected color balls

Report only once per ball, so need memory

 Travel though the maze and report detected color balls and
their locations

FECS 2012

P4 (Cont.): Skills and Challenges

o Basic Programming Skills
 Instantiate a class

Derive a subclass

o Tekkotsu Programming Challenges
New state machine programming language

New semantics of state machine

 Setup computer camera setting for a specific light condition

o Uncertainty and Failure
 Bi-color markers are difficult to detect

Dealing with false color balls
FECS 2012

P4 (Cont.): Follow Wall

Speech
“Tiger Starts …”

Check IR Hold Result

=N=> Forwards
50 mm/s

=B()=>

Send Stop

Halt
Delay

=S<int>=>=S<int>=>

=C=> =T(60000)=>
=S<int>=>

The robot can be placed in anywhere and can be stopped
after a given period of time

FECS 2012

P4 (Cont.): Memorize Color Balls

o Color ball encoding:

Orange(Red): 1
 Blue: 2
Green: 4

o The color ball combinations can be encoded as follows

 {Red, Blue} = 3,
 {Red, Green} = 5,
 {Blue, Green} = 6,
 {Red, Blue, Green} = 7

o The color ball sequences can be encoded as follows

 (Red, Blue, Green)= 124,
 (Blue, Green, Red) = 241, and etc.

FECS 2012

7

P4 (Cont.): Find Balls and Report

Speech
“Tiger Starts …”

Check IR Hold Result

=N=> Forwards
50 mm/s

=B()=>

Look Ball Again

Delay

=S<int>=>

=S<int>=>

=C=> =T(60000)=>
=S<int>=>

Check Ball

=T(3000)=> =C=>

Report

Halt

FECS 2012

P4 (Cont.): Detect and Visit Marker

Speech
“Looking for …”

Take
Snapshot

T(3000)

Look Again

Check for
Marker

Turn to
Search pi/6

S<int>

S<AngSignPi>

Turn to
Marker

S<float>

Speech
“Arrived at..”

C

C

Speech
“Not find …”F

C

=N=>

N

C

Forward

In case of failure in finding any marker,
the robot just goes straight to hit the wallFECS 2012

P5. Another Version of P4

o This is the task for the 2011
Robotics Competition held
along with the 3rd Annual
ARTSI Student Research
Conference

(-457.2, 457.2) (-457.2, -1524.0)South

x

y

(1981.2, 457.2) (1981.2, -1524.0)
North

(0.0, 0.0)
A B

C D

E F

1

2

3

4 5 6

7

89

10 11

12

1314

15 16

17

18190

FECS 2012

P5 (Cont.): Task and Differences

o This task is the same as the one in P4 except
 The bicolor makers are replaced by the AprilTags, and

 The three color balls are replaced by three cubes with each
covered by different AprilTags

o The major differences between P4 and P5
 In P4, each bicolor marker is treated as a topological

navigation marker and the metric measurements of the
maze are not used at all.

 In P5, a metric map of the maze is used in the robot
localization and path planning and execution.

FECS 2012

P5 (Cont.): Milestones

o What students need to know first
Drive the robot forward or make a turn,

 Check the robot location inside the maze,

 Localize the robot within the maze, and

 Look AprilTags that are facing to the robot.

o Milestones
Memorize object the robot has observed in each alcove.

 Look for the object in each alcove

Drive robot to a waypoint in the maze. (goto function)

 Put it together
FECS 2012

P5 (Cont.): Uncertainty and Failure

o Due to the uncertainty, the robot may not be able to be
close enough to the target location. In this case, the goto
function should redo itself again until the robot is close to
the target within a threshold distance (for example, 200
mm). If the robot is still not able to reach the target after
redoing 3 times, the goto function should be stopped and
return a failure.

o Due to the same reason as above, the robot may hit walls
before reaching to the target. In this case, the robot should
backup a little bit and then the goto function should redo
itself again. If the robot is still not able to reach to the
target after redoing 3 times, the goto function should be
stopped and return a failure

FECS 2012

8

drive

localize

wait4walk wait4look

looktags

result

gotowaypoint

backup turn4lookrandomize

Failure

Walk End Look

decide record

again done

Completion

P5 (Cont.): Put It Together

FECS 2012

Conclusion

o The robotics course is for both undergraduate students
and graduate students

o It covers major topics on intelligent mobile robots,
including robot control architectures, localization,
navigation, sensing, planning, and uncertainty

o Robot programming is a key component of this course

o Five major robot programming projects have been
adopted, developed, and taught

o More teaching resources are needed such as textbook,
robot programming materials, etc.

FECS 2012

Moore Projects Using Tekkotsu

Shoot balls Move canisters into a “pen”

FECS 2012

