
Coaching Robotics Competitions with Tekkotsu

Xuejun Liang
Department of Computer Science, Jackson State University, Jackson, MS, USA

Abstract - The robotics competitions held along with the
Annual ARTSI Students Research Conferences were designed
to encourage undergraduate students from non-traditional
backgrounds in the study of robotics in areas that are relevant
to society. The tasks in these competitions were challenging,
including robot searching and localizing itself inside a maze,
finding canisters and pushing them into pen with paddles, and
finding canisters, pickup them up with grippers, and transport
and drop them to a goal location. These tasks are involved in
robot sensing, navigation, manipulation, localization, and etc.
This paper will breakdown these tasks into pieces and present
detailed steps to complete each task so that making these tasks
accomplishable by our robotics team students and suitable for
being major robot programming lab projects in an upper-level
undergraduate robotics course for underrepresented students.
Meanwhile, the Tekkotsu robot programming tool will be also
introduced for programming the robot to accomplish these
competition tasks.

Keywords: Robotics Education, Robotics Competition,
Robot Programming, Tekkotsu

1 Introduction
Teaching an upper-level undergraduate robotics course at

Historically Black Colleges and Universities (HBCUs) is
challenging because of the lack of suitable teaching materials,
especially the robot programming lab projects. Thanks to the
ARTSI (Advancing Robotics Technology for Societal Impact)
Alliance [1]. It provided a family of unified robot platforms
called Calliope [2-4] to each HBCU schools in the alliance,
and the technical support to the robot programming tool called
Tekkotsu [5-6]. More important and helpful are robotics
competitions held each year along with the Annual ARTSI
Students Research Conferences since 2010 [7-10]. The tasks
in these competitions include robot searching and localizing
itself inside a maze, finding canisters and pushing them into
pen with paddles, and finding canisters, pickup them up with
grippers, and transport and drop them to a goal location.
These tasks are involved in robot sensing, navigation,
manipulation, localization, and so on. These tasks can be
excellent hands-on learning materials for our upper-level
undergraduate robotics course. However, these tasks are quite
challenging to our students. A detailed guidance to lead to
solve the problem is desirable.

This paper will breakdown these tasks into pieces and present
detailed steps to complete each task so that making these tasks

accomplishable by our robotics team students and suitable for
being major robot programming lab projects in an upper-level
undergraduate robotics course for underrepresented students.
In fact, three of the four competition tasks have been already
transformed to our robot programming lab projects [13].

It should be pointed out that all the tasks mentioned early are
related to the robot vision in a sense that robots need to use
their visions (cameras) to sense their environment to act to
achieve their goals. These robotics applications require that a
robot can be programmed to be able to know what it wants to
see, to recognize what it observed, to compute the orientation,
the size, and the location of objects it detected, to reason about
the spatial relationship among observed objects, to figure out
the geographical layout of the objects, and to build the map.
These applications are apparently very interesting to computer
science students, and able to broaden their understanding of
computer science concept and encourage them to learn more.
However, programming a robot in these applications from
scratch can be very difficult. Fortunately, the Tekkotsu robot
programming development environment provides users with a
set of high level supports, including vision processing for
shape extraction, shape predicates, and mapmaking. Hence,
the Tekkotsu robot programming tool will be introduced for
programming the robot to accomplish these competition tasks
in this paper.

The Calliope robot family used in our robotics course and
competitions include Calliope basic model, formerly called
the Create/ASUS robot, and Calliope2SP which added 2-DOF
arm, Sony Eye webcan, and pan/tilt on the basic model [2-4].
The iRobot Create uses differential drive and equips buttons
for power, play, advance, and wheel drops (front, left, and
right), bumps (left and right), IR sensor, wall sensor, cliffs
sensors (left, front left, right, front right), encoders (distance,
angle), and Leds. An ASUS netbook computer sitting on top
of iRobot Create is functioned as the brain of the Calliope
robot. The Tekkotsu are installed on the ASUS computer.

In the rest of this paper, the robot programming with using the
Tekkotsu will be introduced first in Section 2. Four robotics
competition tasks will be detailed and discussed from Section
3 to Section 6, each with one section, respectively. In the first
two tasks, a robot needs to navigate and localize itself within a
maze, and to announce detected objects and their locations in
the maze. But, the objects inside the maze and the navigation
markers on the walls of the maze are different in these two
tasks. In the last two tasks, a robot needs to locate canisters
and move them to a goal location. But, one task will use two
attached paddles to push canisters and the goal location is a

#include "Behaviors/StateMachine.h

$nodeclass Counter4 : StateNode {
$setupmachine {
zero: SpeechNode("zero")
one: SpeechNode("One")
two: SpeechNode("two")
three: SpeechNode("three")

zero =T(1000)=> one =T(1000)=> two
=T(1000)=> three =T(1000)=> zero

}
}
REGISTER_BEHAVIOR(Counter4);

square region marked with colored tapes on the ground. The
other task will use the gripper to pickup canisters and the goal
location is marked by an AprilTag on the wall. Note that the
discussions for each task will focus on two aspects: 1. task
and detailed steps to guide students to accomplish it, and 2.
necessary knowledge for completing the tasks, including
programming skills, mathematical formulas, algorithms, and
issues regarding to failures and uncertainty. Finally, a short
discussion and conclusion is presented in Section 7.

2 Introduction to Tekkotsu
Tekkotsu is an application development framework for

mobile robots. It provides (1) lower level primitives for
sensory processing, smooth control of effectors, and event-
based communication, (2) higher level facilities, including an
hierarchical state machine formalism for managing control
flow in the application, a vision system, and an automatically
maintained world map, (3) housekeeping and utility functions,
such as timers and profilers, and (4) the newly added
Tekkotsu crew [12], including Lookout, MapBuilder, Pilot,
and Grasper, which enables programmers to use the built-in
higher level robotic functions such as map-making,
localization, and path planning.

Tekkotsu is object-oriented, making extensive use of C++
templates, multiple inheritance, and polymorphism (operator
overloading). To write a robot control program, users need to
define subclasses that inherit from the Tekkotsu base classes,
and override any member functions requiring customization.
Two types of fundamental classes in Tekkotsu are behaviors
and events. Users need to know the way to response or act
when a behavior is constructed, activated, and deactivated, the
way for a behavior to listen to events and to process events,
and the ways to construct a state machine in Tekkotsu. Users
also need to know the concepts of generator, source, and type
of an event. Furthermore, when using the Tekkotsu crew, users
need to know how to use different types of maps, how to
localize the robot, how to detect and/or move to an object of
interest, and how to get the location and shape information of
objects of interest.

In a Tekkotsu state machine, each state has an associated
action: speak, move, etc. and transitions are triggered by
sensory events, timers, or user’s signals. State nodes are
behaviors. Entering a state is activating it, and leaving a state
is deactivating it. Transitions are also behaviors. A transition
starts to work whenever its source state node becomes active.
Transitions listen to sensors, timer, or other events, and when
their conditions are met, they fire. When a transition fires, it
deactivates its source node(s) and then activates its destination
node(s).

A shorthand notation is used instead of C++ code to build
state machines. The shorthand notation includes the state node
definition, the transition definition, and the state node class
definition. The shorthand is turned into C++ code by a state
machine compiler.

Example 1 lists a Tekkotsu state machine code that describes a
behavior similar to a 2-bit free-running counter circuit. It says
zero, one, two, and three and then backs to zero again. This
application defines a state machine with four state nodes and
four timer transitions, each with 1 second period. SpeechNode
is a built-in node class in Tekkotsu. Note that there are many
built-in node classes and transitions in Tekkotsu. Users can
also define their own node classes, but rarely need to define
their own transition classes.

Example 1: State Machine Code of a 2-bit Counter

In addition to the concepts mentioned above, the following
three basic skills of programming with the Tekkotsu are very
important: (1) how to transit from one state to multiple states
simultaneously so as to support parallel actions or behaviors,
(2) how to transit from one state to one of multiple states
based on different conditions so as to make a conditional
transition, and (3) how to pass and/or share data among states
so as to provide approaches of the data flow and the memory.

Example 2: Partial Code of 2-bit Counter with Reverse

Example 2 lists a part of state machine code that describes a
behavior of 2-bit counter with a reverse button. The counter
will count in a forward order 0, 1, 2, 3 initially. Whenever the
button is pressed, the counting order will be reversed. In this

$nodeclass Counter4R : StateNode {
$provide int b(1);
enum Next {
forward,
backward

};
$nodeclass ButtonPressNode : StateNode {
virtual void doStart() {
erouter->addListener(this,EventBase::button);

}

virtual void doEvent() {
$reference Counter4R::b;
b = 1-b;

}
}
$nodeclass NextNode() : StateNode : doStart {

$reference Counter4R::b;
if (b==1)

postStateSignal<Next>(forward);
else if (b==0)

postStateSignal<Next>(backward);
}

example, the ButtonPressNode node class is defined to keep
track the button event. Whenever the button is pressed, the
shared variable b will change its value. Note that the button
press node will be always active. Thus, this node is concurrent
with other state nodes. To this end, a parallel transition from
the start node like startn =N=> {zero, button} is needed. The
NextNode node class is defined to decide the next state based
on the current order (forward or backward) via the value of
the shared variable b. Thus, one of the two state transition
signals is posed according to the value of b.

3 Locate Color Balls Inside a Maze
The project is taken from the robotics competition task

held along with the 2nd Annual ARTSI Student Research
Conference [7]. This task is to get an iRobot Create/ASUS
robot [2] to navigate and localize itself within a maze, to
announce detected objects and their locations in the maze.

Figure 1: E-Maze with 8 Navigation Markers

The maze is shaped like the letter E as shown in Figure 1: a
long corridor with three alcoves branching off from it. There
is a bicolor marker at each end of each alcove or corridor, for
a total of 8 markers: NE, N, NW, W, SW, S, SE, and E.
Objects placed in the alcoves will be red, blue, or green balls,
one per alcove. The project is graded on visiting each alcove
of the maze, announcing detected objects and their locations,
delivering a final report, and the overall run time.

This project is divided into three parts: (1) Travel though the
maze by modifying the “following wall” behavior, (2) Travel
though the maze and announce the balls the robot detects, and
(3) Travel though the maze and report the balls the robot
detects and their locations.

In Part 1, students need first to run a sample Tekkotsu’s wall
following program. Students will notice that the robot will not
able to follow the wall unless its right side is placed near a
wall, and the robot will not stop. Then, students are required
to modify the sample code so that the robot will perform (a)
go to a wall, (b) follow the wall, and (c) stop after a while. So
the robot can travel through the maze along the walls
regardless where the robot is placed inside the maze.

In Part 2, a sample Tekkotsu state machine code of looking for
balls is given to students. This behavior will announce the
balls in front of the robot. Students need to test the code with
several runs, each run with different sets of color balls and
different lighting conditions. Students may need to change the
ASUS camera settings through Tekkotsu. Then, students are
asked to add the looking for balls behavior in the state
machine code in Part 1. So a robot can look for balls while it
travels through the maze. Note that looking for balls and
traveling through the maze are two parallel behaviors and the
former behavior will send a signal to the latter behavior to
stop the robot after the robot finds all three balls. A state
machine diagram to accomplish this task is given to students.

Please note that the robot may see the same ball several times.
So, the robot must have memory to remember which ball it has
already seen. Meanwhile, the robot should also remember the
ordering in which it sees each of the three balls. To this end, a
scheme of encoding the three colors is provided to students. In
this scheme, Red is labeled as 1, Blue is 2, and Green is 4. A
set of colors, for example, {Red, Green} will be labeled as 5
(1+4). A pair of colors, for example, (Blue, Green) will be
labeled as 24 (210+4). A 3-tuple of colors, for example,
(Blue, Green, Red) will be labeled as 241 (2100+410+1).

In Part 3, a sample Tekkotsu state machine code of visiting
markers is given to students. In this behavior, the robot will
search for a bicolor marker by turning in its place and then
move towards the marker; if the robot cannot find a marker
after a while, it will move forward. In both cases, the robot
will move forward and hit a wall of the maze. Students need to
test this code first with the robot placed in different locations
inside the maze and different lighting conditions. Students
may need to change the ASUS camera settings.

Then, students are asked to modify the sample state machine
code so that the robot will only find the bicolor marker at
south, at southwest, at west, or at northwest. This means that
the markers at the remaining four locations are ignored.
Finally, students are asked to add the modified visiting marker
behavior into the state machine code in Part 2. Then, students
need to modify the announcement and the final report to
include the location information of the detected balls. Note
that the first ball the robot sees must be in the south alcove,
the second must in the middle alcove, and the third must be in
the north alcove, if one of the four bicolor markers at south,
southwest, west, or northwest is found.

In addition to the above guidance, students need to know how
to deal with uncertainty and failure. For example, bicolor
markers are difficult to detect (false negative) and background
blobs are easily recognized as a color ball (false positive).

4 Locate AprilTags Inside a Maze
The project is taken from the robotics competition held

along with the 3nd Annual ARTSI Student Research
Conference [8]. This task is the same as the one in Second 3

WS

N

S

W E

EN

ES

WN

except the bicolor makers are replaced by the AprilTags [11]
and the three color balls are replaced by three cubes with each
covered by different AprilTags. Note that there are 20
navigation markers (AprilTags) on the walls of the E-maze as
shown in Figure 2 so as to support a better result of the robot
localization.

Figure 2: E-Maze, Twenty Navigation Markers (0-19), Six
Waypoints (A-F), and World Coordinates of the Four Corners

In Section 3, each bicolor marker is treated as a topological
navigation marker and the measurements of the maze are not
used at all. On the other hand, in this project, a metric map of
the maze as shown in Figure 2 is used in the robot localization.
Meanwhile, moving robot to a particular waypoint inside the
maze can be done easily by calling a pilot function that is
newly added into Tekkotsu.

This project is divided into four parts: (1) Memorize and
report which object the robot has observed in each alcove, (2)
Look for the object in each alcove, (3) Drive robot to a
waypoint in the maze, and (4) Putting it together.

In Part 1, students need first to run a sample Tekkotsu’s pilot
demonstration program. Students can use commands provided
in this program to drive the robot forward or making a turn,
check the robot location, localize the robot, and look
AprilTags that are facing to the robot and report their IDs.

In this part, students are asked to add a command in this
sample code to report which object the robot has observed in
each alcove. Here, the robot needs to figure out which object
in which alcove. We assume that when the robot is seeing an
object in an alcove, it will also see at least one navigation
marker on the wall of the same alcove. This may generally not
be true. But, users can use commands to make the robot facing
to an object and at least one marker at the same time. Note that

students need to define three shared variables to remember the
objects the robot has observed in each alcove.

In Part 2, students are asked to add a command to look for an
object and its location. Now, we assume that the robot is
inside an alcove, but it may not be facing an object. This new
command allows the robot to look for an object for several
times by making several turns until it finds one as well as its
location or fails to find.

In Part 3, students are asked to add a goto <x y> command to
drive the robot from its current position to location (x, y)
inside the maze. Please note that the world coordinates of
points in the maze should be used in the goto function. The
coordinates of the four corners are shown in Figure 2. Note
that the coordinates are using millimeters as measurement unit.
Students can use the built-in path planning and execution
function through using the Tekkotsu pilot to implement the
goto command. Or, students can implement the goto function
on their own. In this case, we assume there is no obstacle in
between the robot current location and the target location.

Due to the uncertainty, the robot may not be able to be close
enough to the target location. In this case, the goto function
should redo itself again until the robot is close to the target
within a threshold distance (for example, 200 mm). If the
robot is still not able to reach the target after redoing 3 times,
the goto function should be stopped and return a failure.

Due to the same reason as above, the robot may hit walls
before reaching to the target location. In this case, the robot
should backup a little bit and then the goto function should
redo itself again. If the robot is still not able to reach to the
target after redoing 3 times, the goto function should be
stopped and return a failure.

In Part 4, students are asked to put them together by creating a
node class that takes a role of subtask scheduler. For example,
a schedule can be goto A, goto B, look for object, goto A,
goto C, goto D, look for object, … and finally report which
object the robot has observed in each alcove. It is obvious that
this schedule will let the robot find the object at each alcove,
if each subtask is successfully executed.

5 Push Canisters into Pen
The project is taken from the robotics competition held

along with the 4th Annual ARTSI Student Research
Conference [9]. As shown in Figure 3, five red canisters will
be scattered around a 2-by-2 meter space. Near the center of
the space is a 0.75-by-0.75 meter "pen" drawn with blue
masking tape. The task is to get a robot with two added
aluminum paddles to locate the canisters and push all of them
into the pen as quickly as possible.

This project is divided into five parts: (1) Locate and move to
the center of the pen, (2) Locate a canister and move to the
canister, (3) Push one canister into the pen when the robot is
facing a canister and a corner of the pen, (4) Push all canisters
into pen, assuming that the robot is able to see a pen corner

(-457.2, 457.2) (-457.2, -1524.0)
South

x

y

(1981.2, 457.2) (1981.2, -1524.0)
North

(0.0, 0.0)

A B

C D

E F

1

2

3

4 5 6

7

89

10 11

12

1314

15 16

17

18190

and a canister outside the pen at the same time, (5) Push all
canisters into the pen with no assumption in (4).

Figure 3: Push Canisters into Pen

In part 1, a sample state machine code is given to students.
This code will compute the center of the pen based on a corner
of the pen and then drive the robot to the center of the pen,
when the robot is facing a pen corner. Students are asked to
study the code and run the code in the following settings: (1)
the robot facing more than one pen corner, (2) the robot facing
only one pen corner, and (3) the robot facing no corner. Then,
students are asked to modify the code so that the robot can
search for a pen corner if no pen corner is visible to the robot,
and then compute the center of the pen and drive the robot to
the pen center. In case that there is no pen at all, the robot
should report "no pen".

Part 2 is very similar to Part 1. A sample state machine code
that drives the robot to a canister that the robot is looking at is
given to students. Then, students will add a search function so
that the robot will search a canister first and then drive to it.

Figure 4: State Machine Diagram in Part 3

In Part 3, students are asked to write a state machine code to
push one canister into the pen center according to a given state
machine diagram as shown in Figure 4. If the robot can see a
pen corner and a canister outside the pen simultaneously, then
the robot will move to the canister first and then push it into
the pen. If the robot cannot see either any pen corner or any
canister, then it reports “No Pen” or “No Can". Meanwhile,
students are asked to figure out the formulae to compute the
angle and distance to the canister and the angle and distance to
the pen center in the robot's local shape space (local map) as
shown in Figure 5.

Figure 5: Center of Pen and Canister in Local Map

In Part 4, the code in Part 3 is to add a search function first
according to a given state transition diagram shown in Figure
6. If the robot can see a corner of the pen and a canister
simultaneously, then the robot will move to the canister first
and then push it into the pen and say “Done”. If the robot does
not see either a corner or a canister, then the robot will makes
a turn a little bit (say, 30 degree) and then continue to look for
a corner and a canister. If the robot is still unable to find a
corner and a canister simultaneously after making several
turns (say, 12), then the robot should stop searching and report
“Fail”.

Figure 6: State Machine Diagram in Part 4

Next in Part 4, students are asked to extend the above code
further to push all canisters into pen. After one canister is
pushed into the pen, the robot should backup and get out of
the pen, and then repeat for a next canister until all canisters
are inside the pen. Note that the distance between a canister
and the pen center can be used to judge if the canister is inside
the pen or not.

Figure 7: State Machine Diagram in Part 5

In Part 5, the assumption that the robot is able to see a canister
and a pen corner simultaneously is removed. Thus, the robot
should detect a pen corner and compute and memorize the pen
center first. Then, whenever the robot moves, the coordinate
transform of the pen center should be performed so as to keep

the pen center always inside the current local shape space.
Figure 7 shows the state transition diagram that students
should implement for their final version of the code.

6 Pickup Canisters
The project is taken from the 5th robotics competition held

along with the Fifth Annual ARTSI Student Research
Conference [10]. As shown in Figure 8, this task will be done
using a Calliope2SP robot in a 1 meter by 2 meter rectangular
arena with white walls and an AprilTag on one short wall
marking a goal location. Three colored cylinders will be
scattered around the arena, far from the goal. The robot must
locate each cylinder, pick it up using its gripper, and transport
it to the goal location, defined as by a 2x2 foot box below the
AprilTag.

Figure 8: Pickup and Putdown Canisters

This project is divided into five parts: (1) Locate an AprilTag
and move close to it, (2) Pickup a canister when it is placed in
between the two fingers of the gripper, (3) Locate a canister,
move to the canister, and pickup the canister, (4) Locate a
canister, move to it, pickup it, transport it to the goal location,
and drop it, and (5) Add memory to the robot.

In Part 1, a sample state machine code is given to students.
This code will obtain the location of AprilTag in front of the
robot and drive the robot to this location. Students are asked
to test this code and then modify the code so that the robot can
search for an AprilTag, if no tag is visible to the robot. It is
also possible that there is no AprilTag at all. In this case, the
robot should report that there is no tag.

In Part 2, a state machine code is given to students. This code
will make the robot in a getting ready posture by using the
Tekkotsu's Dynamic Motion Sequence Node. In this posture,
the robot's head looks ahead, the robot's arm points ahead, and
the robot's gripper is open and in a low position. Students are
asked to study the code and then add two more motion
sequences: Pickup and Putdown so that if a canister is placed
in between the gripper's two fingers, the robot should be able
to pick the canister up. Note that students may need to test the
code several times to adjust the distance in between two
fingers until the robot can pick the canister up.

In Part 3, a sample state machine code is given to students.
This code will detect canisters and drive the robot to the
canister that is closest to the robot. If there is no canister, the
robot will report there is no can. As shown in Figure 9, the
grippers is northeast to the robot center. In order to make the
two fingers of the gripper close enough to the canister after the
robot moves to the canister, the robot should follow the route
with red color in Figure 9. To this end, students need to give
the formulae to calculate D, β, and θ. Note that (xg, yg) can be
obtained by measuring the Calliope2SP robot, d is a constant
which is a little longer than the gripper's finger, and (xc, yc)
can be obtained by using Tekkotsu. Note that students need to
test this code and their formulae multiple times to adjust their
formulae. Finally, students are asked to write a new state
machine code so that the robot can locate a canister, move to
the canister, and pickup the canister.

Figure 9: Center of Robot, Gripper, and Canister

In Part 4, students are asked to write a state machine code that
simply combine their codes in Part 3 and Part 1 together so
that the robot can locate a canister, move to it, pick it up, and
transport it to the goal location that is close to the AprilTag
and drop it. After testing this code, students will extend it so
that the robot will continue its work until it finishes to pickup,
transport, and drop all three canisters. Note that students are
asked to make sure the robot will not pick up a canister again
that has been already transported to the goal location. This
may need some assumptions if the robot has no memory.

In Part 5, students are asked to add a shared variable to
memorize the AprileTag location. Therefore, the robot just
needs to search for the AprilTag once and it will know a
canister has been already transported to the goal location, if
the canister is close enough to the AprileTag. In this case,
whenever the robot moves, the coordinate transform of the
AprilTag location should be performed so as to keep it always
inside the current local shape space. Figure 10 shows the state

Center of Robot

θ
Gripper (xg, yg)

Canister (xc, yc)

D

x

y

α

β

xg = 320
yg = -100
d = 75d

xg

(xp, yp)

(xt, yt)

-yg

α

transition diagram that students should implement for their
final version of the code.

Figure 10: State Machine Diagram in Part 5

7 Discussion and Conclusion
Our robotics team at JSU has participated in the robotics

competitions held along with the ARTSI Annual Student
Research Conferences four times since 2010. Three of the four
competition tasks have already been transformed into our
major robot programming lab projects. Our robotics course
has been offered in the fall semesters four times starting from
2009 [13]. It covers all major topics on intelligent mobile
robots, including robot control architectures, navigation,
localization, planning, sensing, and uncertainty.

The ARTSI robotics competitions have provided a unique
opportunity to encourage undergraduate students from non-
traditional backgrounds in the study of robotics in areas that
are relevant to society. They have also provided rich materials
for robotics education. Coaching students for preparing for
such competitions are challenging and time-consuming, but it
also gives coaches an opportunity to learn how to help their
students to solving the challenging problems.

The robot programming development tool Tekkotsu builds a
set of high-level interacting software components. Thus, it
relieves a programmer of the burden of specifying low-level
robot behaviors [12]. This makes it possible to accomplish
challenging robotic applications and to teach and practice
more on robotics rather than programming details. In addition,
the 3-D simulation software Mirage can be used along with
the Tekkotsu for the simulation. But, there is a large learning
curve to master the Tekkotsu fundamentals and its high-level
software components. The Tekkotsu tool is under the constant
construction and changes a lot over time.

One of the biggest problems we were facing in the robotics
competitions is uncertainty. The environments have a huge
impact on the robot performance. All our robotics competition
tasks are related to the robot vision. The robots are required to
recognize bicolor markers, color balls, and color cylinders.
However, these jobs are sensitive to the lighting conditions in
the competition site. There are a lot false negatives for bicolor
makers and a lot false positives for color balls and cylinders.
But, the AprilTags detection is very accurate and stable. This
makes the robot localization more accurate. So, we applied the
Tekkotsu built-in robot localization function in the second
robotics competition.

Finally, there could be other alternative ways to solve the
robotics competition problems. For examples, the world map
could be used in the third and fourth competitions. Therefore,
it is easy for robot to memorize the locations of the pen center
and the AprilTag. But, maintaining a world map in Tekkotsu
makes it slower and adds a little more uncertainty. Thus, we
selected to use the local map. This also leave a chance to let
users to keep track the objects they need.

Acknowledgments

This work was supported by National Science Foundation
award CNS-1042326. The author thanks Dr. David Touretzky
for his help on the Tekkotsu.

8 References
[1] ARTSI Alliance, Available at http://artsialliance.org/

[2] D. S. Touretzky, iRobot Create/ASUS Notebook Platform
for Tekkotsu, Available at http://chiara-robot.org/Create/

[3] D. S. Touretzky, Calliope Mobile Manipulation Platform
for Tekkotsu, Available at http://chiara-robot.org/Calliope/

[4] D. S. Touretzky, Calliope Robot, Available at
http://wiki.tekkotsu.org/index.php/Calliope_Robot

[5] E. J. Tira-Thompson, G. V. Nickens, and D. S. Touretzky,
Extending Tekkotsu to new platforms for cognitive robotics,
Proceedings of the 2007 AAAI Mobile Robot Workshop, pp.
47-51, Menlo Park, CA.

[6] D. S. Touretzky, and E. J. Tira-Thompson, Tekkotsu: A
framework for AIBO cognitive robotics, Proceedings of the
Twentieth National Conference on Artificial Intelligence
(AAAI-05), volume 4, pp. 1741-1742. Menlo Park, CA, 2005.

[7] ARTSI Alliance, 2010 Robotics Competition, Available at
http://artsialliance.org/2010-Robotics-Competition

[8] ARTSI Alliance, 2011 Robotics Competition, Available at
http://artsialliance.org/2011-Robotics-Competition

[9] ARTSI Alliance, 2012 Robotics Competition, Available at
http://artsialliance.org/2012-Robotics-Competition

[10] ARTSI Alliance, 2013 Robotics Competition, Available
at http://artsialliance.org/2013-Robotics-Competition

[11] E. Olson, AprilTag: A robust and flexible visual fiducial
system, Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA 2011), Shanghai, China,
May 2011.

[12] D. S. Touretzky, and E. J. Tira-Thompson, The Tekkotsu
“Crew” Teaching Robot Programming At A Higher Level,
Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence (AAAI-10), pp. 1908-1913, Atlanta,
GA, 2010.

[13] Xxuejun Liang, Introduction to Robotics, Available at
http://www.jsums.edu/robotics/

