
1  for(int i = 0; i < MAX_DIM; ++i) //A 
2    c[i] = a[i] * b[i]; 

1  for(int i = 0; i < n; ++i) {    //B1 
2    for(int j = 0; j < n; ++j) {   //B2 
3      c[i*n+j] = 0; 
4      for(int k = 0; k < n; k++) { //B3 
5        c[i*n+j] += a[i*n+k] * b[k*n+j]; 
6      } 
7    } 

}

1  for(int i = 0; i < n; ++i) {    //C1 
2    for(int j = 0; j < n; ++j) {   //C2 
3      c[i+n*j] = 0; 
4      for(int k = 0; k < n; k++) { //C3 
5        c[i+n*j] += a[i+n*k] * b[k+n*j]; 
6      } 
7    } 
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Abstract - Modern computer processors can support parallel 
execution of a program by using their multicores. Computers 
can also support vector operations by using their extended 
SIMD instructions. To make a computer program run faster, 
the time-consuming loop computations in the program can 
often be parallelized and vectorized to utilize the capacity of 
multicores and extended SIMD instructions. In this paper, the 
vector multiplication and the matrix multiplication will be
used as examples to illustrate how to perform parallelization 
and vectorization of loops in a C/C++ program when using 
Microsoft Visual C++ compiler or GNU gcc (g++) compiler. 
An overview of the Intel@
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Advanced Vector Extension (AVX) 
instructions, their intrinsics, and the OpenMP is given. The 
performance testing results and their comparisons are also 
presented for the combinations of cases, such as with or
without vectorization or parallelization.

1 Introduction
Modern computer processors can support parallel execution 

of a program by using their multicores. Computers can also 
support vector operations by using their extended SIMD 
instructions. To make a program run faster, the time-
consuming loop computations in the program can often be 
parallelized and vectorized to utilize the capacity of 
multicores and extended SIMD instructions.  

There are two ways to vectorize a loop computation in a 
C/C++ program. Programmers can use intrinsics inside the 
C/C++ source code to tell compilers to generate specific
SIMD instructions so as to vectorize the loop computation.
Or, compilers may be setup to vectorize the loop computation 
automatically. This is called auto-vectorization. There are also 
two ways to parallelize a loop computation in a C/C++ 
program. Programmers can use pragmas (like those defined in 
OpenMP) inside the C/C++ source code to guide compilers to 
parallelize the loop computation. Or, compilers may be setup 
to parallelize the loop computation automatically. This is
called auto-parallelization.  

In this paper, the vector multiplication as shown in Figure 1 
and the matrix multiplication as shown in Figure 2 and 3 are
used as computation examples. The Microsoft Visual C++ 
compiler and the GNU gcc (g++) compiler are investigated 
and utilized to compile the example programs. This paper will
illustrate how to use intrinsics and pragmas to perform the 

loop vectorization and the loop parallelization, respectively. It 
will also show how to setup compiler flags to perform auto-
vectorization and auto-parallelization. An overview of the 
Intel@ Advanced Vector Extension (AVX) instructions, their 
intrinsics, and the OpenMP is given. The performance testing 
results and their comparisons are also presented for the 
combinations of cases with or without the two types of 
vectorization or the two types of parallelization. These testing 
results and comparisons will tell us that in what situation
programmers should use intrinsics and pragmas explicitly to 
perform the vectorization and the parallelization, respectively, 
or otherwise, let the compiler do the job. They also show that
memory access patterns will affect the performance.

Figure 1: Vector Multiplication

Figure 2: Matrix Multiplication (stored in Row-Major)

Figure 3: Matrix Multiplication (Stored in Column-Major)

Note that matrices are stored in one-dimensional arrays in the 
row-major order in Figure 2, and in the column-major order 
in Figure 3.

In the rest of the paper, an overview of the Intel@ Advanced 
Vector Extension (AVX) and their intrinsics is introduced in 
Sections 2. Vectorizing matrix multiplication by using AVX 
instrinsics is presented in Sections 3. The compiler options 
for auto-vectorization are given in Section 4. The compiler 
options for auto-parallelization and the OpenMP pragmas for 
loop parallelization are given in Section 5. The performance 
analysis and comparison are reported in Section 6. The 
conclusion is given in Section 7. 
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01 for (int i = 0; i < n; i++) {     //D1 
02   for (int j = 0; j < n; j += 8) {   //D2 
03     __m256 m0 = _mm256_setzero_ps(); 
04     for (int k = 0; k < n; k++) {   //D3 
05       __m256 m1 = _mm256_broadcast_ss(a+i*n+k); 
06       __m256 m2 = _mm256_load_ps((b+k*n+j)); 
07       __m256 m3 = _mm256_mul_ps(m1, m2); 
08       m0 = _mm256_add_ps(m0, m3); 
09     } 
10     _mm256_store_ps(c+i*n+j, m0); 
11   } 
12 } 

01 for ( int i = 0; i < n; i += 8 ) {   //E1 
02   for ( int j = 0; j < n; j++ ) {   //E2 
03     __m256 m0 = _mm256_setzero_ps();  
04     for( int k = 0; k < n; k++ ) {   //E3 
05       __m256 m1 = _mm256_load_ps(a+i+n*k);  
06       __m256 m2 = _mm256_broadcast_ss(b+k+n*j); 
07       __m256 m3 = _mm256_mul_ps(m1, m2); 
08       m0 = _mm256_add_ps(m0, m3); 
09    } 
10     _mm256_store_ps(c+i+l*j, m0); 
11   } 
12 }

2 AVX Instructions and Intrinsics
The concept of SIMD (single instruction Multiple Data) is 

to apply a single operation on multiple data simultaneously. 
The computer capacity can be effectively enhanced by adding 
such SIMD instructions along with providing additional
registers which can hold multiple scalar data. 

Intel has experienced SIMD extensions many times from 
Multi-Media Extension (MMX), Streaming SIMD Extension 
(SSE, SSE2, SSE3, SSE4), to Advanced Vector Extension 
(AVX, AVX2, AVX-512). The AVX floating point registers
extend from (XXM) 128-bit to (YYM) 256-bit, which can 
hold eight 32-bit single precision floating point (FP) operands 
or four 64-bit double precision FP operands.  

Intel® AVX added support for many new instructions and 
extended Intel SSE instructions to the new 256-bit registers, 
by putting prefix "v" to SSE instructions for accessing new 
register sizes and three-operand forms [1]. Many instructions 
have also suffixes [PS/PD/SS/SD], where PS means packed 
single-precision, PD means packed double-precision, SS 
means scalar single-precision, and SD means scalar double-
precision. Therefore, AVX could have the following forms of 
floating point addition instructions.
ADD[PS/PD/SS/SD]  XMM1, XMM2/M128 
VADD[PS/PD/SS/SD]  XMM1, XMM2, XMM3/M128 
VADD[PS/PD/SS/SD]  YMM1, YMM2, YMM3/M256

where M128 is memory data aligned at 128-bit boundary and 
M256 aligned at 256-bit boundary. 

In order to use these AVX instructions in a C/C++ program, 
users will use intrinsics (intrinsic functions) that the compiler
can replace with the proper assembly instructions. The Intel 
AVX intrinsic functions use three new C data types:  
__m256, __m256d, and __m256i

where __m256 is packed float, __m256d is packed double, 
and __m256i is packed integer. Most Intel AVX intrinsic 
names have the following format:  
_m256_OP_SURFIX

where OP is an operation such as ADD or SUB, and SURFFIX
can be [PS/PD/SS/SD]. Three examples of prototypes of 
AVX intrinsic functions corresponding to the above three 
forms of AVX instructions are listed below.  
__m128 _mm_add_ps(__m128 m1, __m128 m2); 
__m128 _mm256_add_ps(__m128 m2, __m128 m3); 
__m256 _mm256_add_ps(__m256 m2, __m256 m3); 

Note that the prototypes for Intel AVX intrinsics are available 
in the header file immintrin.h.

3 Vectorizing Using AVX Intrinsics
Single-precision floating point numbers are used in this 

work. So, it is expected that 8 float numbers will be packed 
into one YYM register. Figure 4 shows the code of vectorized 

matrix multiplication using AVX intrinsics where matrixes are
stored in the row-major order. Note that in Figure 4, we have
m0 = (c[i*n+j+0], ..., c[i*n+j+7]) 
m1 = (a[i*n+k+0], ..., a[i*n+k+0]) 
m2 = (b[k*n+j+0], ..., b[k*n+j+7]) 

Figure 4: Vectorized Matrix Multiplication Using Intrinsics 
(Matrixes Stored in Row-Major)

Figure 5 shows the code of vectorized matrix multiplication 
using AVX intrinsics where matrixes are stored in the 
column-major order. Note that in Figure 5, we have
m0 = (c[i+n*j+0], ..., c[i+n*j+7]) 
m1 = (a[i+n*k+0], ..., a[i+n*k+7]) 
m2 = (b[k+n*j+0], ..., b[k+n*j+0]) 

Figure 5: Vectorized Matrix Multiplication Using Intrinsics 
(Matrixes Stored in Column-Major)

4 Auto-Vectorization
Compiler options for automatically generating vectorized 

loop are presented for Microsoft Visual C++ and GNU GCC 
in this section.

4.1. Microsoft Visual C++ Compiler: Microsoft Visual 
Studio Express 2013 for Windows Desktop is used for this 
work. To start, create a new empty Visual C++ project. Then, 
select Release as the solution configuration and x64 as the 
solution platform. Finally, create a C++ file and add it to the 
project under Source Files folder. Now, we are ready to 
compile and run the program with Visual C++. 

By default, Visual C++ will perform auto-vectorization in the 
release configuration. In order to get the reason code [2] to 
find out why a loop is not vectorized, we need to open the 
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project's Property pages by clicking PROJECT and then 
Properties (Alt+F7), and select, in this order, Configuration 
Properties, C/C++, Command Line, and then write  
/Qvec-report:2

in the textbox below Additional Options in the right pane. In 
addition, we can select Code Generation below C/C++ and 
choose
Advanced Vector Extensions (/arch:AVX) 

by clicking on the right side of the line "Enable Enhanced 
Instruction Set" in the right pane to specify a targeted SIMD
extension of IA32 for the vectorization. 

Now, we can test the auto-vectorizer with code segments as 
shown in Figure 1, 2, and 3. The loop A in Figure 1 is 
vectorized only. Loops B1and B2 in Figure 2 and C1and C2 
in Figure 3 are not vectorized because they are outer loops. 
Loops B3 in Figure 2 and C3 in Figure 3 are not vectorized 
because the loop body includes non-contiguous accesses into 
an array.

In order to disable auto-vectorizing a loop, we need to add the 
following line just before the loop statement.

#pragma loop(no_vector)

4.2. GCC Compiler: Minimal GNU for Windows (MinGW) 
will provide a native Windows port of the GNU Compiler 
Collection (GCC). GCC (gcc and g++) 4.6.2 and 6.1.0 are
installed on the Microsoft Windows 7 platform and used for 
this work.

The compiler flag
-ftree-vectorize

will enable the auto-vectorization. This flag is enable at
-O3

Meanwhile, a targeted SIMD extension to IA-32, say, AVX, 
must be specified by using the compiler flag
-mavx

Thus, the following command will vectorize loops in the
program, mytest.cpp
g++ -O3 -mavx mytest.cpp 

In order to know if a loop is not vectorized and why, the flag

should also be used.

-ftree-vectorizer-verbose=2

Now, we can test the auto-vectorization with code segments 
as shown in Figure 1, 2, and 3. The loop A in Figure 1 and the 
loop B2 in Figure 2 (outer loop) are vectorized. The loops B1 
and B3 in Figure 2 and C1 in Figure 3 are not reported. The 
loop C2 in Figure 3 is not vectorized because of complicated 
access pattern. The loop C3 in Figure 3 is not vectorized 
because of unsupported use in statement. 

5 Auto-Parallelization and OpenMP
Compiler options for automatically generating parallelized 

loop are presented for Microsoft Visual C++ and GNU GCC 
in this section. Meanwhile, using OpenMP to parallelize a 
loop computation is also introduced.

5.1. Microsoft Visual C++ Compiler: To enable auto-
parallelizer for parallelizing loops, we  need to select Code 
Generation below C/C++ and choose
Yes(/Qpar)

by clicking on the right side of the line "Enable Parallel Code 
Generation" in the right pane. In order to get the reason code 
to find out why a loop is not parallelized, we need to select 
Command Line below C/C++ and then add 
/Qpar-report:2

in the textbox below Additional Options in the right pane. 

Now, we can test the auto-parallelizer with code segments as 
shown in Figure 1, 2, and 3. No loops are parallelized! 

The loop A in Figure 1 is not parallelized because the 
compiler detected that this loop does not perform enough 
work to warrant auto-parallelization. In this case, you can tell 
the compiler to do the loop parallelization anyway by adding 
the following line just before the loop statement.
#pragma loop(hint_parallel(4)) 

Loops B1 and B2 in Figure 2 and C1 and C2 in Figure 3 are 
not parallelized because a data dependency in the loop body
is falsely detected by the compiler. The loops B3 in Figure 2 
and C3 in Figure 3 are not parallelized because there is a 
scalar reduction in the loop body. Scalar reduction can occur 
if the loop has been vectorized. 

5.2. GCC Compiler: The following two compiler flags
-floop-parallelize-all

-ftree-parallelize-loops=4

will trigger the auto-parallelization. Therefore, the following 
command will parallelize loops in your program, mytest.cpp. 
g++ -floop-parallelize-all -ftree-
parallelize-loops=4 mytest.cpp 

Unfortunately, g++ 4.6.2 does not implement Graphite loop 
optimization, which is supposed to perform the loop auto-
parallelization. The latest version of g++ (6.1.0) do compile 
successfully with the two parallelization flags. But, no report 
is available to tell which loop is parallelized and which not. 

5.3. Parallelize Loop Using OpenMP: OpenMP is an 
application programming interface (API) that supports shared 
memory multiprocessing programming in C, C++, and 
Fortran. Microsoft Visual C++ compiler supports OpenMP by 
default. Users only need to include the OpenMP header file 
omp.h in their program. GCC compiler supports OpenMP by 
using the compiler flag
-fopenmp  
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To parallelize a loop in C/C++ program, only a single 
OpenMP compiler pragma (directive)

#pragma omp parallel for 

is needed to put right before the loop statement. Programmers 
can call the OpemMP function

 omp_set_num_threads(NUM_THREADS) 

to specify the number of threads to use.

6 Performance Analysis and 
Comparison

First of all, the Dell Precision M4600 laptop is used for the 
testing. The processor (Intel(R)

Table 1: The run-times of vector multiplication

Core i7-2620M CPU) has 2 
cores and supports 4 threads. The auto-parallelization is tested 
only on the vector multiplication example with Visual C++. 
The run-time with auto-parallelization is around 10 times 
slower than without parallelization. As shown in Table 1, the 
run-time of auto-vectorization alone is very slow and program 
compiled by g++ is much faster than Visual C++ compiler. 
Note that four threads are used and the size of the arrays is 
81920 for VC++ and 163840 for G++.

auto-vector AVX OpenMP 
auto-vector

OpenMP 
AVX

VC++ 0.000050 0.000005 0.000005 0.000005
G++ 0.000067 0.000001 0.000001 0.000001

As shown in Table 2, the run-times are almost the same with 4 
threads and 2 threads. The run-times are also almost the same 
with and without OpenMP for VC++. Note that the size of 
matrices is 256 256 for VC++ and 416 416 for G++. But, the 
run-time with OpenMP is much slower than without OpenMP 
for G++ (compare columns Normal and OpenMP Normal) 
because the auto-vectorization is performed for Normal but 
not for OpenMP Normal.

Table 2: The run-times of matrix multiplication (row-major)

Table 3: The run-times of matrix multiplication (column-major)

Now, look at Normal column in Table 2 and Table 3 for G++. 
The run-time for column-major is about 3 times slower than 

for row-major. The reason is that the auto-vectorization is 
carried out for row-major, but not for column-major. 

It can be seen that the run-time is greatly reduced when AVX 
intrinsic functions are used for both VC++ and G++. OpenMP 
is unable to improve performance a lot. This may be because 
the processor has only 2 cores.  

7 Conclusion
This study is the continuation of our previous work [3] that 

illustrates how programming can be performed at different 
levels. This work illustrates how and in what situation
programmers should use intrinsics and pragmas explicitly to 
perform a loop vectorization and parallelization, respectively, 
or otherwise, let compilers do the job automatically. Based on 
this work the following conclusions can be drawn: 

Vectorization using intrinsics is necessary for non-trivial 
cases because auto-vectorization is performed for simple 
cases only. G++, not VC++, can vectorize the inner-loop 
of matrix multiplication when matrices are stored in row-
major. But, both cannot vectorize the outer loop of matrix 
multiplication when matrices are stored in column-major. 
Performance with auto-parallelization is not as good as 
that with parallelization using Open-PM. Using Open-MP 
directives to parallelize a loop is easy. 
The performance gain with vectorization is significant 
with using both VC++ and G++ compilers. 
The performance gain with parallelization is not 
significant with using both VC++ and G++ compilers.
This may be because the cache misses and the memory 
bandwidth limitations.
Selecting right algorithm and right data storage format is 
important because matrix multiplication with row-major 
storage is 3-times faster than column-major when using 
G++ compiler. 

The authors will investigate more realistic and challenging 
algorithms for the performance gain by using vectorization 
and parallelization. 
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Normal AVX OpenMP 
Normal

OpenMP 
AVX

VC++ (4) 0.029821 0.004304 0.023691 0.004372
VC++ (2) 0.022238 0.005275 0.023987 0.004672
G++ (4) 0.026333 0.029333 0.066667 0.020333
G++ (2) 0.030667 0.030667 0.077667 0.025667

Normal AVX OpenMP 
Normal

OpenMP 
AVX

VC++ (4) 0.023848 0.004387 0.018558 0.004722
VC++ (2) 0.027695 0.004567 0.019088 0.004411
G++ (4) 0.093000 0.028333 0.055667 0.017667
G++ (2) 0.094000 0.026333 0.074333 0.020333
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