
1 for(int i = 0; i < MAX_DIM; ++i) //A
2 c[i] = a[i] * b[i];

1 for(int i = 0; i < n; ++i) { //B1
2 for(int j = 0; j < n; ++j) { //B2
3 c[i*n+j] = 0;
4 for(int k = 0; k < n; k++) { //B3
5 c[i*n+j] += a[i*n+k] * b[k*n+j];
6 }
7 }

}

1 for(int i = 0; i < n; ++i) { //C1
2 for(int j = 0; j < n; ++j) { //C2
3 c[i+n*j] = 0;
4 for(int k = 0; k < n; k++) { //C3
5 c[i+n*j] += a[i+n*k] * b[k+n*j];
6 }
7 }

Vectorization and Parallelization of Loops in C/C++ Code

Xuejun Liang, Ali A. Humos, and Tzusheng Pei
Department of Computer Science, Jackson State University, Jackson, MS, USA

Abstract - Modern computer processors can support parallel
execution of a program by using their multicores. Computers
can also support vector operations by using their extended
SIMD instructions. To make a computer program run faster,
the time-consuming loop computations in the program can
often be parallelized and vectorized to utilize the capacity of
multicores and extended SIMD instructions. In this paper, the
vector multiplication and the matrix multiplication will be
used as examples to illustrate how to perform parallelization
and vectorization of loops in a C/C++ program when using
Microsoft Visual C++ compiler or GNU gcc (g++) compiler.
An overview of the Intel@

Keywords: Computer Architecture, Vectorization, Advanced
Vector Extension (AVE), Parallelization, OpenMP

Advanced Vector Extension (AVX)
instructions, their intrinsics, and the OpenMP is given. The
performance testing results and their comparisons are also
presented for the combinations of cases, such as with or
without vectorization or parallelization.

1 Introduction
Modern computer processors can support parallel execution

of a program by using their multicores. Computers can also
support vector operations by using their extended SIMD
instructions. To make a program run faster, the time-
consuming loop computations in the program can often be
parallelized and vectorized to utilize the capacity of
multicores and extended SIMD instructions.

There are two ways to vectorize a loop computation in a
C/C++ program. Programmers can use intrinsics inside the
C/C++ source code to tell compilers to generate specific
SIMD instructions so as to vectorize the loop computation.
Or, compilers may be setup to vectorize the loop computation
automatically. This is called auto-vectorization. There are also
two ways to parallelize a loop computation in a C/C++
program. Programmers can use pragmas (like those defined in
OpenMP) inside the C/C++ source code to guide compilers to
parallelize the loop computation. Or, compilers may be setup
to parallelize the loop computation automatically. This is
called auto-parallelization.

In this paper, the vector multiplication as shown in Figure 1
and the matrix multiplication as shown in Figure 2 and 3 are
used as computation examples. The Microsoft Visual C++
compiler and the GNU gcc (g++) compiler are investigated
and utilized to compile the example programs. This paper will
illustrate how to use intrinsics and pragmas to perform the

loop vectorization and the loop parallelization, respectively. It
will also show how to setup compiler flags to perform auto-
vectorization and auto-parallelization. An overview of the
Intel@ Advanced Vector Extension (AVX) instructions, their
intrinsics, and the OpenMP is given. The performance testing
results and their comparisons are also presented for the
combinations of cases with or without the two types of
vectorization or the two types of parallelization. These testing
results and comparisons will tell us that in what situation
programmers should use intrinsics and pragmas explicitly to
perform the vectorization and the parallelization, respectively,
or otherwise, let the compiler do the job. They also show that
memory access patterns will affect the performance.

Figure 1: Vector Multiplication

Figure 2: Matrix Multiplication (stored in Row-Major)

Figure 3: Matrix Multiplication (Stored in Column-Major)

Note that matrices are stored in one-dimensional arrays in the
row-major order in Figure 2, and in the column-major order
in Figure 3.

In the rest of the paper, an overview of the Intel@ Advanced
Vector Extension (AVX) and their intrinsics is introduced in
Sections 2. Vectorizing matrix multiplication by using AVX
instrinsics is presented in Sections 3. The compiler options
for auto-vectorization are given in Section 4. The compiler
options for auto-parallelization and the OpenMP pragmas for
loop parallelization are given in Section 5. The performance
analysis and comparison are reported in Section 6. The
conclusion is given in Section 7.

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 | 203

ISBN: 1-60132-457-X, CSREA Press ©

01 for (int i = 0; i < n; i++) { //D1
02 for (int j = 0; j < n; j += 8) { //D2
03 __m256 m0 = _mm256_setzero_ps();
04 for (int k = 0; k < n; k++) { //D3
05 __m256 m1 = _mm256_broadcast_ss(a+i*n+k);
06 __m256 m2 = _mm256_load_ps((b+k*n+j));
07 __m256 m3 = _mm256_mul_ps(m1, m2);
08 m0 = _mm256_add_ps(m0, m3);
09 }
10 _mm256_store_ps(c+i*n+j, m0);
11 }
12 }

01 for (int i = 0; i < n; i += 8) { //E1
02 for (int j = 0; j < n; j++) { //E2
03 __m256 m0 = _mm256_setzero_ps();
04 for(int k = 0; k < n; k++) { //E3
05 __m256 m1 = _mm256_load_ps(a+i+n*k);
06 __m256 m2 = _mm256_broadcast_ss(b+k+n*j);
07 __m256 m3 = _mm256_mul_ps(m1, m2);
08 m0 = _mm256_add_ps(m0, m3);
09 }
10 _mm256_store_ps(c+i+l*j, m0);
11 }
12 }

2 AVX Instructions and Intrinsics
The concept of SIMD (single instruction Multiple Data) is

to apply a single operation on multiple data simultaneously.
The computer capacity can be effectively enhanced by adding
such SIMD instructions along with providing additional
registers which can hold multiple scalar data.

Intel has experienced SIMD extensions many times from
Multi-Media Extension (MMX), Streaming SIMD Extension
(SSE, SSE2, SSE3, SSE4), to Advanced Vector Extension
(AVX, AVX2, AVX-512). The AVX floating point registers
extend from (XXM) 128-bit to (YYM) 256-bit, which can
hold eight 32-bit single precision floating point (FP) operands
or four 64-bit double precision FP operands.

Intel® AVX added support for many new instructions and
extended Intel SSE instructions to the new 256-bit registers,
by putting prefix "v" to SSE instructions for accessing new
register sizes and three-operand forms [1]. Many instructions
have also suffixes [PS/PD/SS/SD], where PS means packed
single-precision, PD means packed double-precision, SS
means scalar single-precision, and SD means scalar double-
precision. Therefore, AVX could have the following forms of
floating point addition instructions.
ADD[PS/PD/SS/SD] XMM1, XMM2/M128
VADD[PS/PD/SS/SD] XMM1, XMM2, XMM3/M128
VADD[PS/PD/SS/SD] YMM1, YMM2, YMM3/M256

where M128 is memory data aligned at 128-bit boundary and
M256 aligned at 256-bit boundary.

In order to use these AVX instructions in a C/C++ program,
users will use intrinsics (intrinsic functions) that the compiler
can replace with the proper assembly instructions. The Intel
AVX intrinsic functions use three new C data types:
__m256, __m256d, and __m256i

where __m256 is packed float, __m256d is packed double,
and __m256i is packed integer. Most Intel AVX intrinsic
names have the following format:
_m256_OP_SURFIX

where OP is an operation such as ADD or SUB, and SURFFIX
can be [PS/PD/SS/SD]. Three examples of prototypes of
AVX intrinsic functions corresponding to the above three
forms of AVX instructions are listed below.
__m128 _mm_add_ps(__m128 m1, __m128 m2);
__m128 _mm256_add_ps(__m128 m2, __m128 m3);
__m256 _mm256_add_ps(__m256 m2, __m256 m3);

Note that the prototypes for Intel AVX intrinsics are available
in the header file immintrin.h.

3 Vectorizing Using AVX Intrinsics
Single-precision floating point numbers are used in this

work. So, it is expected that 8 float numbers will be packed
into one YYM register. Figure 4 shows the code of vectorized

matrix multiplication using AVX intrinsics where matrixes are
stored in the row-major order. Note that in Figure 4, we have
m0 = (c[i*n+j+0], ..., c[i*n+j+7])
m1 = (a[i*n+k+0], ..., a[i*n+k+0])
m2 = (b[k*n+j+0], ..., b[k*n+j+7])

Figure 4: Vectorized Matrix Multiplication Using Intrinsics
(Matrixes Stored in Row-Major)

Figure 5 shows the code of vectorized matrix multiplication
using AVX intrinsics where matrixes are stored in the
column-major order. Note that in Figure 5, we have
m0 = (c[i+n*j+0], ..., c[i+n*j+7])
m1 = (a[i+n*k+0], ..., a[i+n*k+7])
m2 = (b[k+n*j+0], ..., b[k+n*j+0])

Figure 5: Vectorized Matrix Multiplication Using Intrinsics
(Matrixes Stored in Column-Major)

4 Auto-Vectorization
Compiler options for automatically generating vectorized

loop are presented for Microsoft Visual C++ and GNU GCC
in this section.

4.1. Microsoft Visual C++ Compiler: Microsoft Visual
Studio Express 2013 for Windows Desktop is used for this
work. To start, create a new empty Visual C++ project. Then,
select Release as the solution configuration and x64 as the
solution platform. Finally, create a C++ file and add it to the
project under Source Files folder. Now, we are ready to
compile and run the program with Visual C++.

By default, Visual C++ will perform auto-vectorization in the
release configuration. In order to get the reason code [2] to
find out why a loop is not vectorized, we need to open the

204 Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

ISBN: 1-60132-457-X, CSREA Press ©

project's Property pages by clicking PROJECT and then
Properties (Alt+F7), and select, in this order, Configuration
Properties, C/C++, Command Line, and then write
/Qvec-report:2

in the textbox below Additional Options in the right pane. In
addition, we can select Code Generation below C/C++ and
choose
Advanced Vector Extensions (/arch:AVX)

by clicking on the right side of the line "Enable Enhanced
Instruction Set" in the right pane to specify a targeted SIMD
extension of IA32 for the vectorization.

Now, we can test the auto-vectorizer with code segments as
shown in Figure 1, 2, and 3. The loop A in Figure 1 is
vectorized only. Loops B1and B2 in Figure 2 and C1and C2
in Figure 3 are not vectorized because they are outer loops.
Loops B3 in Figure 2 and C3 in Figure 3 are not vectorized
because the loop body includes non-contiguous accesses into
an array.

In order to disable auto-vectorizing a loop, we need to add the
following line just before the loop statement.

#pragma loop(no_vector)

4.2. GCC Compiler: Minimal GNU for Windows (MinGW)
will provide a native Windows port of the GNU Compiler
Collection (GCC). GCC (gcc and g++) 4.6.2 and 6.1.0 are
installed on the Microsoft Windows 7 platform and used for
this work.

The compiler flag
-ftree-vectorize

will enable the auto-vectorization. This flag is enable at
-O3

Meanwhile, a targeted SIMD extension to IA-32, say, AVX,
must be specified by using the compiler flag
-mavx

Thus, the following command will vectorize loops in the
program, mytest.cpp
g++ -O3 -mavx mytest.cpp

In order to know if a loop is not vectorized and why, the flag

should also be used.

-ftree-vectorizer-verbose=2

Now, we can test the auto-vectorization with code segments
as shown in Figure 1, 2, and 3. The loop A in Figure 1 and the
loop B2 in Figure 2 (outer loop) are vectorized. The loops B1
and B3 in Figure 2 and C1 in Figure 3 are not reported. The
loop C2 in Figure 3 is not vectorized because of complicated
access pattern. The loop C3 in Figure 3 is not vectorized
because of unsupported use in statement.

5 Auto-Parallelization and OpenMP
Compiler options for automatically generating parallelized

loop are presented for Microsoft Visual C++ and GNU GCC
in this section. Meanwhile, using OpenMP to parallelize a
loop computation is also introduced.

5.1. Microsoft Visual C++ Compiler: To enable auto-
parallelizer for parallelizing loops, we need to select Code
Generation below C/C++ and choose
Yes(/Qpar)

by clicking on the right side of the line "Enable Parallel Code
Generation" in the right pane. In order to get the reason code
to find out why a loop is not parallelized, we need to select
Command Line below C/C++ and then add
/Qpar-report:2

in the textbox below Additional Options in the right pane.

Now, we can test the auto-parallelizer with code segments as
shown in Figure 1, 2, and 3. No loops are parallelized!

The loop A in Figure 1 is not parallelized because the
compiler detected that this loop does not perform enough
work to warrant auto-parallelization. In this case, you can tell
the compiler to do the loop parallelization anyway by adding
the following line just before the loop statement.
#pragma loop(hint_parallel(4))

Loops B1 and B2 in Figure 2 and C1 and C2 in Figure 3 are
not parallelized because a data dependency in the loop body
is falsely detected by the compiler. The loops B3 in Figure 2
and C3 in Figure 3 are not parallelized because there is a
scalar reduction in the loop body. Scalar reduction can occur
if the loop has been vectorized.

5.2. GCC Compiler: The following two compiler flags
-floop-parallelize-all

-ftree-parallelize-loops=4

will trigger the auto-parallelization. Therefore, the following
command will parallelize loops in your program, mytest.cpp.
g++ -floop-parallelize-all -ftree-
parallelize-loops=4 mytest.cpp

Unfortunately, g++ 4.6.2 does not implement Graphite loop
optimization, which is supposed to perform the loop auto-
parallelization. The latest version of g++ (6.1.0) do compile
successfully with the two parallelization flags. But, no report
is available to tell which loop is parallelized and which not.

5.3. Parallelize Loop Using OpenMP: OpenMP is an
application programming interface (API) that supports shared
memory multiprocessing programming in C, C++, and
Fortran. Microsoft Visual C++ compiler supports OpenMP by
default. Users only need to include the OpenMP header file
omp.h in their program. GCC compiler supports OpenMP by
using the compiler flag
-fopenmp

Int'l Conf. Frontiers in Education: CS and CE | FECS'17 | 205

ISBN: 1-60132-457-X, CSREA Press ©

To parallelize a loop in C/C++ program, only a single
OpenMP compiler pragma (directive)

#pragma omp parallel for

is needed to put right before the loop statement. Programmers
can call the OpemMP function

 omp_set_num_threads(NUM_THREADS)

to specify the number of threads to use.

6 Performance Analysis and
Comparison

First of all, the Dell Precision M4600 laptop is used for the
testing. The processor (Intel(R)

Table 1: The run-times of vector multiplication

Core i7-2620M CPU) has 2
cores and supports 4 threads. The auto-parallelization is tested
only on the vector multiplication example with Visual C++.
The run-time with auto-parallelization is around 10 times
slower than without parallelization. As shown in Table 1, the
run-time of auto-vectorization alone is very slow and program
compiled by g++ is much faster than Visual C++ compiler.
Note that four threads are used and the size of the arrays is
81920 for VC++ and 163840 for G++.

auto-vector AVX OpenMP
auto-vector

OpenMP
AVX

VC++ 0.000050 0.000005 0.000005 0.000005
G++ 0.000067 0.000001 0.000001 0.000001

As shown in Table 2, the run-times are almost the same with 4
threads and 2 threads. The run-times are also almost the same
with and without OpenMP for VC++. Note that the size of
matrices is 256 256 for VC++ and 416 416 for G++. But, the
run-time with OpenMP is much slower than without OpenMP
for G++ (compare columns Normal and OpenMP Normal)
because the auto-vectorization is performed for Normal but
not for OpenMP Normal.

Table 2: The run-times of matrix multiplication (row-major)

Table 3: The run-times of matrix multiplication (column-major)

Now, look at Normal column in Table 2 and Table 3 for G++.
The run-time for column-major is about 3 times slower than

for row-major. The reason is that the auto-vectorization is
carried out for row-major, but not for column-major.

It can be seen that the run-time is greatly reduced when AVX
intrinsic functions are used for both VC++ and G++. OpenMP
is unable to improve performance a lot. This may be because
the processor has only 2 cores.

7 Conclusion
This study is the continuation of our previous work [3] that

illustrates how programming can be performed at different
levels. This work illustrates how and in what situation
programmers should use intrinsics and pragmas explicitly to
perform a loop vectorization and parallelization, respectively,
or otherwise, let compilers do the job automatically. Based on
this work the following conclusions can be drawn:

Vectorization using intrinsics is necessary for non-trivial
cases because auto-vectorization is performed for simple
cases only. G++, not VC++, can vectorize the inner-loop
of matrix multiplication when matrices are stored in row-
major. But, both cannot vectorize the outer loop of matrix
multiplication when matrices are stored in column-major.
Performance with auto-parallelization is not as good as
that with parallelization using Open-PM. Using Open-MP
directives to parallelize a loop is easy.
The performance gain with vectorization is significant
with using both VC++ and G++ compilers.
The performance gain with parallelization is not
significant with using both VC++ and G++ compilers.
This may be because the cache misses and the memory
bandwidth limitations.
Selecting right algorithm and right data storage format is
important because matrix multiplication with row-major
storage is 3-times faster than column-major when using
G++ compiler.

The authors will investigate more realistic and challenging
algorithms for the performance gain by using vectorization
and parallelization.

8 References
[1] Chris Lomont, "Introduction to Intel® Advanced Vector
Extensions", available at https://software.intel.com/en-us/
articles/introduction-to-intel-advanced-vector-extensions

[2] Microsoft, "Vectorizer and Parallelizer Messages",
available at https://msdn.microsoft.com/en-us/library/jj658585
(v=vs.120).aspx

[3] Xuejun Liang, Loretta A. Moore, and Jacqueline Jackson,
"Programming at Different Levels: A Teaching Module for
Undergraduate Computer Architecture Course", in
Proceedings of the 2014 International Conference on Frontiers
in Education: Computer Science and Computer Engineering
(FECS’14), pp.77-83, Las Vegas, Nevada, USA, July 21-24,
2014

Normal AVX OpenMP
Normal

OpenMP
AVX

VC++ (4) 0.029821 0.004304 0.023691 0.004372
VC++ (2) 0.022238 0.005275 0.023987 0.004672
G++ (4) 0.026333 0.029333 0.066667 0.020333
G++ (2) 0.030667 0.030667 0.077667 0.025667

Normal AVX OpenMP
Normal

OpenMP
AVX

VC++ (4) 0.023848 0.004387 0.018558 0.004722
VC++ (2) 0.027695 0.004567 0.019088 0.004411
G++ (4) 0.093000 0.028333 0.055667 0.017667
G++ (2) 0.094000 0.026333 0.074333 0.020333

206 Int'l Conf. Frontiers in Education: CS and CE | FECS'17 |

ISBN: 1-60132-457-X, CSREA Press ©

