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Abstract: Generalized template matching (GTM) 
operations can be accelerated using reconfigurable 
systems with field programmable gate array (FPGA) 
hardware resources. The GTM operation involves 
intensive memory accesses when image is stored off -
chip. FPGA designs that use different memory access 
patterns (MAPs) tend to have big differences in 
performance and hardware resource requirements. To 
obtain an optimal GTM FPGA design, there is a need 
to enumerate design options based on the MAPs. 
Some measures to evaluate MAPs in terms of the 
performance and the required hardware resources are 
introduced. Algorithms to prune MAPs and to 
enumerate all non-dominated MAPs are proposed so 
that the design space can be explored more eff iciently. 
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1 Introduction  
The generalized template matching (GTM) [1] 

operations include image-processing algorithms for 
2D digit filtering, morphologic operations, motion 
estimation, and template matching. Mapping GTM 
operations on reconfigurable computers automatically 
and optimally is desirable.  

The computation of a GTM operation is to move 
a template (or mask) pixel by pixel in scanning line 
order, similar to the “Sliding Window-Based 
Operations” (SWO) as in [4]. In GTM a template may 
be quite “sparse” and only a low percentage of pixels 
in a “window” is involved in the computation. The 
GTM computation can be formulated as a nested loop. 
The computation iterates through image regions, 
templates, and pixel locations. The loop body 
computation, called the Basic Function (BF), involves 
applying one template window at one image pixel 

location. The image region is a set of consecutive 
image rows. The image pixels in the template window 
that are used for the BF evaluation are called active 
points. A functional unit design, called the unit 
function (UF), for the GTM operation consists of one 
or more copies of BFs as shown in Figure 1. The BFs 
compute in parallel either at several consecutive pixel 
locations or for several templates. It is also possible to 
have multiple UFs inside a single FPGA chip.  
 
 
 
 
 
 
 
 
 
 
 
 
 

In Figure 1, using buffers to buffer image pixels 
inside the FPGA chip serves two purposes: (1) it can 
reduce redundant memory accesses as the template 
window moves, and (2) it can provide more data in 
parallel to a UF than limited memory ports can.  
However, the FGPA buffer requires more FPGA area. 
This tradeoff can be explored by examining different 
memory access patterns.  

There have been many research works about the 
use of data buffers to speed up applications. For 
example, a reconfigurable pipeline 2-D convolver 
design in [5] includes storage (shift registers) for pixel 
values contained in delay line and for convolution 
window. Because of these shift registers, the 
convolution can be carried out for one pixel location 
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each clock period. For another example, the 
researchers [6] at BYU in their implementation of an 
automated target recognition algorithm uses data 
buffers so that the correlations can be computed 
column by column, and sums up the partial sums for 
all columns of template. In this method, all column 
correlations are computed in parallel but only one 
column of data needs to be available for processing. 
Note that the former approach buffers more data, and 
therefore has higher throughput, than the latter 
approach. But, the former approach needs more circuit 
area. The tradeoff of speed and area is not addressed 
in their works.  

Since for many applications (including GTM 
operations) the throughput of the reconfigurable 
coprocessor is determined by the external memory 
accesses, the external memory access optimization is 
very important. The paper in [7] presents a definition 
of Equivalence of Vector Access in order to infer the 
on-chip storage for the data that need to be accessed 
redundantly from external memory. The paper in [8] 
has a similar work on the automatic derivation of data 
FIFO. Although two metrics are created in [8] to guide 
the selection of which direction vector to exploit reuse 
and determine the number and length of data FIFO, 
the on-chip storage inferred for a particular 
application may require a very large chip area, thus it 
is possible that the chip may not have an area large 
enough to accommodate such on-chip storage. Also, 
both works do not consider the computation cost.  

Two basic steps of the optimal GTM design 
methodology are to first enumerate, evaluate, and list 
enough number of design options of UFs and FPGA 
buffers, and then to select and combine some of them 
to build the final design [2].  The design goal is to 
obtain a GTM design on reconfigurable computer as 
fast as possible in term of throughput under the 
constraints of FPGA broad. This paper focuses on the 
enumeration process of FPGA buffers. A way to list 
these design options is to order them from the fastest 
one to the slowest one in terms of throughput. A faster 
UF has a higher throughput, or a smaller global data 
introduction interval (II) in its pipelined design.  A 
procedure therefore has been developed to enumerate 
and evaluate design options based on increasing II 
divided by packing factor (PF). (PF is defined as the 
number of image pixels in one memory location. 
When packing, PF copies of BFs can be used to 
compute at PF consecutive pixel locations.) During 
the enumeration process, for a given pair of PF and II, 
there are usually many designs that can be grouped 
based on their memory access patterns (MAPs). 
Therefore, there is a need to enumerate all MAPs for 
all PFs and IIs. 

This paper shows the design enumeration 
process by relating FPGA buffers and UF synthesis 

constraints, such as PF and II, to the MAP. A 
domination relation is defined among MAPs based on 
measures such as FPGA buffer size, number of 
memory ports, and memory size. If a MAP is 
dominated by other MAPs, it is not a candidate for 
further examination. Algorithms to prune MAPs and 
to enumerate all non-dominated MAPs are developed 
so that the design space can be explored 
systematically and efficiently. 

Section 2 describes MAPs and FPGA buffer 
designs. Section 3 presents measures of MAPs and an 
algorithm to enumerate all the non-dominated MAPs. 
Section 4 presents two pruning processes to reduce the 
number of MAPs that need to be subjected to the 
domination consideration. Section 5 gives 
experimental results that demonstrate the effectiveness 
of the proposed techniques, and a simple example that 
shows the whole optimization process of GTM design. 
Section 6 concludes the paper. 

 

2 MAPs and FPGA Buffers 
As shown in Figure 1, there are two basic 

components in a GTM design, an FPGA buffer and a 
UF. An FPGA buffer can be measured by its area and 
the initial buffer filling time. A UF can be measured 
by its FPGA area and the computation time in terms of 
scheduling length (SL), II and PF. The measures of 
both components can be affected by different MAPs. 
In addition, different MAPs may lead to significantly 
different memory sizes.  

 
2.1 MAPs 

For the readability, notations used in the paper 
are listed in the following table. Some of them are 
explained latter.  
αW Frequency of a Write Operation  
BDATA No. of Bits on Image Pixel 
CIMG No. of Image Columns 
CWIN No. of Columns of Template Window 
IIMIN Minimum II 
IIUB Upper Bound of II 
NAP No. of Active Points of BF 
NLB No. of Line Buffers 
NLB(P) Number of Line Buffers for Port P 
NMP No. of Memory Ports on Chip 
NMW No. of Memory Writes of BF 
NNMAP Number of Non-Dominated MAPs 
NP No. of Ports used (NP≤NMP) 
NR(P) No. of Reads from Port P. 
NPMAP No. of Pruned MAPs 
NR No. of Reads in II Cycles 
NW No. of Writes in II Cycles 
NW(P) No. of Writes to Port P. 
RIMG No. of Image Rows 
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RWIN No. of Rows of Template Window 
SM Size of Required Memory  
SM(P) Size of Required Memory by Port P 
SMAP(PF,II) Set of MAPs for Given PF and II 
SMAP(PF) Set of MAPs for Given PF 
SNMAP(PF) Set of Non-Dominated MAPs 
WMP Width of Memory Port in Bits 

 
For a given pair of PF and II, a MAP includes 

the following information. 
• The number of memory ports used (NP), which 

should be less than or equal to NMP.  
• The number of memory reads (NR(p)) from each 

memory port, p, (1≤p≤NP) in the II clock cycles. 
The vector (NR(1), NR(2),…, N R(NP)) is called the 
memory reading pattern. 

• The number of memory writes (NW(p)) to each 
memory port, p, (1≤p≤NP) in II clock cycles. The 
vector (NW(1), NW(2),…, N W(NP)) is called the 
memory writing pattern.  
The set of MAPs for given PF and II is denoted 

as SMAP(PF,II). Intuitively, a MAP in SMAP(PF,II) can 
be represented as a rectangle with NP×II cells. Each 
cell is labeled with R for reading, W for writing, or I 
for idling. A row of cells stands for memory accesses 
of one memory port, and a column of cells stands for 
the memory accesses in one particular clock cycle. For 
example, when PF=2, II=4, NMW=1, and NMP=4, there 
may exist a MAP as shown in the following table, in 
which two memory ports are used (NP=2), the memory 
reading pattern is (3,2) and the memory writing 
pattern is (1,1), where the first row is for memory port 
1 and the second for memory port 2. 

  
 
 

 
 
Assume that NR and NW are the total number of 

memory reads and writes in II clock cycles of a MAP, 
respectively. Then the MAP has to satisfy the 
following constraints.  

 
 
 
 
 
 
 
 
The requirement of NR(p)+NW(p)>0 means that 

the memory port considered in a MAP has at lease one 
read or one write operation.  Note that the total 
number of writings, NW, is fixed for given PF, while 
the total number of readings, NR, can be changed in a 

specific range. Also note that different NR and reading 
patterns require different FPGA buffers, which is 
explained in the FPGA buffer section.  

PFs can be calculated by 
 
All possible II also can be determined by 
 
 
 
 
 
The minimum IIMIN corresponds to using all 

memory ports and reading only once in a BF 
evaluation. The upper bound IIUP corresponds to using 
only one memory port and reading all active points in 
a BF evaluation.  

 
2.2 FPGA Buffers 

When NR < NAP, the computation unit has to get 
some of the image data from inside the FPGA chip. 
Therefore there is a need for FPGA buffers. In order 
to support the function-level parallelism, the data 
within the template window are buffered inside FPGA 
as window moves. When NR is less than RWIN, (RWIN - 
NR) rows (lines) of image data must be also buffered 
inside FPGA. The buffer for an image line is called an 
image line buffer. 

An FPGA buffer example is shown in Figure 2. 
It uses two memory ports. Port one supports two rows 
of image data and provides one image pixel during II 
clock cycles. Port 2 supports three rows and provides 
two pixels during II clock cycles. Both memory ports 
need to buffer one image line aside from data inside 
the template.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The buffer design is to provide such FPGA 

buffers when 1≤NR≤RWIN. When NR=RWIN, there is no 
need for image line buffers. When NR=NAP, there is no 
need for any buffering unless the memory packing 
scheme is considered. In that case, an FPGA buffer is 
still needed to support multiple BF copies for 
“random” accesses of active points [2]. No buffering 
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strategy is considered for RWIN < NR < NAP because of 
the complicated memory controller design and 
relatively few performance benefits. 

One of the FPGA buffer design issues is to 
determine the number of image rows each memory 
port is supposed to provide. The basic idea is to 
distribute (RWIN-NR) image rows almost equally 
among memory ports to balance the workload of the 
initial buffer filli ng. 

 

3 Non-Dominated MAPs 
The MAPs can be evaluated with the following 

four quality measures. The first measure is the number 
of image line buffers (NLB) defined as RWIN-NR. The 
second is the number of memory port (NP). The third 
is the initiation interval (II) . The last measure is the 
memory size requirement (SM).  

 
where SM(p) is the required memory size for memory 
port p (1≤p≤NP) as defined as  

 
 

 
Let  

 
  Definition: For two MAPs A and B in 

SMAP(PF), A dominates B if A’s NL ≤ B’s NL, and A’s 
NP ≤ B’s NP, and A’s SM ≤ B’s SM, and A’s II ≤ B’s II . 

From this definition, when A dominates B, A is 
better than B in all four measures. Therefore, there is 
no need to consider B for an optimal design. In other 
words, B can be eliminated during the enumeration of 
UF design options. 

If a MAP in SMAP(PF) is not dominated by any 
other element in SMAP(PF), it is considered non-
dominated. The set of all the non-dominated elements 
in SMAP (PF) is denoted as SNMAP(PF). The set of all 
the non-dominated elements in SMAP(PF, II) is denoted 
as SNMAP(pf, II) . The following algorithm is a brute-
force procedure of finding SNMAP(PF) from a given 
SMAP(PF). 

Algorithm: Finding SNMAP(PF) from SMAP(PF). 
 
 
 
 
 
 
 
 
 
 
 
 

Note that SMAP(PF) needs to be found before the 
algorithm can be applied which in turn requires the 
enumeration of SMAP(PF,II) for each II . The set 
SMAP(PF,II) can be enumerated by iterating through all 
NR and NP, and in each iteration, finding reading 
patterns that satisfy the (3.1) constraints and finding 
writing patterns that satisfy the (3.2) constraints. That 
is, 

 
 
 
 
 
 
 
 
 
 
 
 
In the above formulation, the memory port 

ordering is ignored because it does not influence 
design optimality. This assumption cuts down the 
number of reading patterns and leads to 

 
The following constraint is assumed for a similar 

reason. For 1≤p≤NP-1, 
 
Note that this enumeration process grows very 

fast. The equation in (3.1) corresponds to the integer 
partition problem. There is no general formula to 
express the number of such partitions. But, for a fixed 

NR, the growth of the number is ))1(
(

−PN
RNθ [3].  

The equation in (3.2) can lead to even more partitions 
because the order of writing cannot be ignored after 
the order of reading is fixed. Therefore, although the 
solutions to the constraints (3.1) and (3.2) can be 
enumerated directly, it is a good idea to combine the 
SMAP(PF) enumeration process with the following 
pruning process so that the enumeration process can 
avoid most of the dominated MAPs.  

 

4 MAP Pruning  
The MAP pruning process includes the reading 

pattern pruning and writing pattern pruning. 
4.1 Reading Pattern Pruning 

Some reading patterns can be pruned because 
they cannot lead to a non-dominated MAP.  

Definition: A minmax decomposition of an 
integer n with respect to another integer q is (i1, i2, …, 
iq) that minimizes i1 subject to  
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For an integer n, there are a total of n minmax 
decompositions with respect to q=1, 2, …, n, 
respectively. For example, assume n=4, the four 
minmax decompositions are (1,1,1,1), (2,1,1), (2,2), 
and (4). As another example, if n=17 and q=3, then 
the minmax decomposition is (6,6,5).   

Given a MAP A, its reading pattern is denoted as 
PA(R)=(NR(1), NR(2), …, N R(NP)) that satisfies (3.1). 
Assume that NR(q) ≠0 and NR(q+1)=0 and that 
(N’R(1), N’R(2), …, N’ R(q)) is the minmax 
decomposition of NR with respect to q. Then the MAP 
A can be transformed to another MAP T(A) such that 
the reading pattern PT(A)(R) = (N’R(1), N’R(2), …, 
N’R(q), 0, 0, …, 0). Note that the writing pattern of 
T(A) may be different from that of A. 

Theorem 1: T(A) dominates A. 
The proof is omitted because of the space. 
This theorem allows the pruning of huge number 

of reading patterns because, given NR, only the 
minmax decomposition needs to be considered. Given 
NP, NR, and II, a typical MAP with a reading pattern 
that contains a minmax decomposition of NR with 
respect to q (1≤q≤ NP) is as follows.  

 
4.2 Writing Pattern Pruning 

After the reading pattern pruning, the next step is 
to prune writing patterns. For this purpose, reading 
patterns can be classified into seven types. The idea is 
to minimize the memory size (SM ) of a MAP by 
arranging writing patterns for each type of reading 
patterns separately, and then reducing II or NP without 
changing SM. The pruning algorithm is presented for 
only two types of reading patterns because of the 
space.  

Case1: The reading pattern is shown as follows, 
where NR(i)=II for 
1≤i≤q and NR(j)=0 for 
q<j≤ NP (1<q<NP). 
Assume the writing 
pattern is as shown at 
the bottom of the 
figure. The pattern 
can be pruned if one 
of the following two 
conditions holds. 

Otherwise, the MAP gets the minimum SM for the 
given reading pattern. 

(1) bx <  
(2) There is a y>0 such that x+y≤II, (x+y)×α ≤1, 

and x-b ≤ y∗(bm-1). 
Case 2: The reading pattern is shown as follows, 

where NR(i)=r for 1≤i≤q and NR(j)=0 for q<j≤ NP 
(1<r<II and 1<q<NP).  The writing pattern can be 
viewed as two parts, one at the right of the reading 
pattern and the other 
below that. In order to 
get the minimum SM, 
memory ports in each 
part has to have 
"balanced" numbers of 
memory writes (as 
shown in the figure).  
The ranges of x and y 
are 0≤x≤II-NR(1) and 
1≤y≤ II.  From those 
values of x and y, the (x, 
y)  pair that leads to the 
minimum SM is to be 
found. If the maximum 
value of x and y in that pair is less than II, then the 
pattern can be pruned.  

Theorem 2: No MAP in the pruned SMAP(PF, II) 
(after applying writing pattern pruning) can be 
dominated by an element in SMAP(PF, II’) with II’ less 
than II. 

The basic idea of pruning SMAP(PF) is to prune 
each SMAP(PF, II) in the increasing order of II. 
Theorem 2 ensures that each element in the pruned 
SMAP(PF, II) cannot be dominated by an element in 
SMAP(PF, II’) with II’ < II. Therefore, the S NMAP(PF) 
can be obtained by computing each SNMAP(PF, II) 
separately. 

By using the above two pruning processes, one 
for reading patterns and the other for writing ones, 
enumerating the pruned SMAP(PF, II) can be finished 
in polynomial time. For each NR and NP, the reading 
patterns can be enumerated in linear time to NR, and 
for each reading pattern, the writing patterns can be 
determined in a polynomial time with respect to NP, 
NW and II. Therefore, the total computational time 
complexity is polynomial to the problem size. 
 

5 Experimental Results 
5.1 Efficiency of Pruning Algorithm 

The proposed pruning and enumeration 
algorithm and the algorithm to find SNMAP(PF) from 
SMAP(PF) have been implemented in a C++ program. 
Also, a dynamic programming algorithm that solves 
the integer partition problem (Constraints (3.1) and 
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(3.2)) has been developed and implemented to 
compute SMAP(PF). Two experiments were performed. 

In the first experiment, assume that NMP=4, 
WPORT =32, BDATA=8, NMW=2, and αW=1.0. For 
several different RWIN and NAP, the number of MAPs 
after pruning (NPMAP) and the number of non-
dominated MAPs (NNMAP) are counted. The results are 
summarized in the following table, where the 
computation time is in seconds. 

 
The table shows that the algorithm is very 

effective and the computation time is within tens of 
seconds for typical sizes of GTM operations. The last 
column of the table shows that after pruning, about 
40%-50% of MAPs are non-dominated. Therefore, the 
algorithm to find SNMAP(PF) removes around 50%-
60% of MAPs after pruning. 

The second experiment is to compare the 
algorithms with or without pruning. In this 
experiment, assume NMP=4, WPORT =32, BDATA=8, 
NMW=1, and αW=1.0. In the following two tables, the 
first one lists the results with pruning and the second 
without. It can be observed that the number of MAPs 
(NMAP) without pruning is much larger than the 
corresponding NPMAP, and the ratio of NMAP to NPMAP 

increases significantly as the problem size increases. 
That would explain the same trend for the 
computation times.  
 

WWIN NAP NPMAP Time 
3 9 72 0.02 
9 20 214 0.06 
15 30 346 0.17 

 
 

WWIN NAP NMAP Time 
3 9 4032 1.48 
9 20 61133 30.59 
15 30 285966 252.38 

It is worth mentioning that the values of NMAP 
shown in the second table are lower bounds of MAPs. 
When solving the constraints (3.1) and (3.2) for NR’s 

and NP’s, the following extra constraint is 
incorporated to reduce the size of the solution space 
(SMAP(PF)). 

 
 

5.2 GTM Optimal Mapping 
This section presents a simple example to show 

the steps to explore GTM design space and find the 
fastest (highest throughput) design. In this example, it 
is assumed that the FPGA board has only one FPAG 
chip (Xilinx 4000 series) with only one memory port, 
and that CIMG=360, RWIN=3, CWIN=4, NAP=9, NMW=1, 
αW=1.0, WMP=16, and BDATA=8. The BF is simply a 
function summing up nine active points in the 
template window.  

The first step is to get all non-dominated MAPs 
and list them in the increasing order of II/PF as 
follows. Note that the smaller II/PF a design has, the 
higher the throughput is. 

 
The second step is to compute the buffer and 

synthesize the BF dataflow graph to get the UF for 
each MAP in the list. The third step is to select UFs 
and assign FPGA board resources such as memory 
ports and FPGA chips them to get the final GTM 
design. Because there is a single FPGA and a single 
memory port, the GTM design is composed of only 
one UF associated with possible buffer. Therefore, in 
this simple example, the third step is trivial.   

After computing the buffer area and the UF area 
for each MAP in the above order. The first MAP 
whose corresponding design’s area is less than t he 
FPGA area is the fastest design. Assume the FPGA 
has 720 CLBs, the following area information implies 
the fourth map corresponds an optimal design. 

Buffer Area UF Area Total Area 
680 408 1088 
474 404 878 
548 216 764 
264 376 640 

 
The above buffer areas are computed according 

to an approximate formula. The UF area is obtained 
from the datapath generated by synthesizing the 
dataflow graph of the BF. Each node in the datapath 

RWIN NAP NPMAP NNMAP Time NNMAP 
NPMAP 

3 9 96 50 0.06 52% 
9 20 288 130 0.17 45% 
25 45 816 351 0.66 38% 
45 65 1492 632 2.14 42% 
65 75 2169 915 4.89 42% 
85 95 2845 1199 10.22 42% 
105 115 3522 1481 19.11 42% 
125 135 4199 1765 33.28 42% 

PF II MAP Buffer Type 
2 3 RWW Full/Packing 
2 4 RRWW Hybrid/Packing 
1 2 RW Full 
2 5 RRRWW Partial/Packing 
1 3 RRW Hybrid 
1 4 RRRW Partial 
2 11 RRRRRRRRRWW Internal 
1 10 RRRRRRRRRW No 

1−+≥+ PNIIWNRN

(b) Without Pruning 

(a) With Pruning 
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corresponds to one component in the library that 
contains the area. Note the UF controller area is not 
added at the current stage.   

 

6 Conclusions 
This paper presents the concept of memory 

access patterns (MAPs) and the measures to evaluate 
the MAPs. The relations among MAPs, FPGA buffers, 
and unit function designs are studied. Algorithms to 
prune and enumerate all non-dominated MAPs are 
given so that the FPGA GTM design space can be 
explored systematically and efficiently.  

This work represents an important step in GTM 
optimal mapping on reconfigurable computers. At 
Wright State University, a VHDL generator for FPGA 
buffers has be developed to generate VHDL file 
automatically according to several design parameters 
including MAPs. The unit function synthesis 
algorithms have also been created and implemented to 
provide pipelined designs of the unit function (UF). 
After getting these building blocks of GTM designs, 
an FPGA board resource binding and image region 
partitioning can be performed. Finally an interface 
tool still under development will generate steering 
logic and interface controllers to get an optimal GTM 
design. 
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