
 1

Memory Access Pattern Enumeration in GTM
Mapping on Reconfigurable Computers

Xuejun Liang and Jack Jean
Department of Computer Science and Engineering

Wright State University
(xliang, jj ean)@cs.wright.edu

Abstract: Generalized template matching (GTM)
operations can be accelerated using reconfigurable
systems with field programmable gate array (FPGA)
hardware resources. The GTM operation involves
intensive memory accesses when image is stored off -
chip. FPGA designs that use different memory access
patterns (MAPs) tend to have big differences in
performance and hardware resource requirements. To
obtain an optimal GTM FPGA design, there is a need
to enumerate design options based on the MAPs.
Some measures to evaluate MAPs in terms of the
performance and the required hardware resources are
introduced. Algorithms to prune MAPs and to
enumerate all non-dominated MAPs are proposed so
that the design space can be explored more eff iciently.

Keywords: Generalized Template Matching,
Configurable Computing, Field Programmable Gate
Array (FPGA), Design Automation and Optimization

1 Introduction
The generalized template matching (GTM) [1]

operations include image-processing algorithms for
2D digit filtering, morphologic operations, motion
estimation, and template matching. Mapping GTM
operations on reconfigurable computers automatically
and optimally is desirable.

The computation of a GTM operation is to move
a template (or mask) pixel by pixel in scanning line
order, similar to the “Sliding Window-Based
Operations” (SWO) as in [4]. In GTM a template may
be quite “sparse” and only a low percentage of pixels
in a “window” is involved in the computation. The
GTM computation can be formulated as a nested loop.
The computation iterates through image regions,
templates, and pixel locations. The loop body
computation, called the Basic Function (BF), involves
applying one template window at one image pixel

location. The image region is a set of consecutive
image rows. The image pixels in the template window
that are used for the BF evaluation are called active
points. A functional unit design, called the unit
function (UF), for the GTM operation consists of one
or more copies of BFs as shown in Figure 1. The BFs
compute in parallel either at several consecutive pixel
locations or for several templates. It is also possible to
have multiple UFs inside a single FPGA chip.

In Figure 1, using buffers to buffer image pixels
inside the FPGA chip serves two purposes: (1) it can
reduce redundant memory accesses as the template
window moves, and (2) it can provide more data in
parallel to a UF than limited memory ports can.
However, the FGPA buffer requires more FPGA area.
This tradeoff can be explored by examining different
memory access patterns.

There have been many research works about the
use of data buffers to speed up applications. For
example, a reconfigurable pipeline 2-D convolver
design in [5] includes storage (shift registers) for pixel
values contained in delay line and for convolution
window. Because of these shift registers, the
convolution can be carried out for one pixel location

Unit Function

BF BF

FPGA Buffer

FPGA

…

MEM … MEM

…
…

Figure 1: Buffer and Unit Function

 2

each clock period. For another example, the
researchers [6] at BYU in their implementation of an
automated target recognition algorithm uses data
buffers so that the correlations can be computed
column by column, and sums up the partial sums for
all columns of template. In this method, all column
correlations are computed in parallel but only one
column of data needs to be available for processing.
Note that the former approach buffers more data, and
therefore has higher throughput, than the latter
approach. But, the former approach needs more circuit
area. The tradeoff of speed and area is not addressed
in their works.

Since for many applications (including GTM
operations) the throughput of the reconfigurable
coprocessor is determined by the external memory
accesses, the external memory access optimization is
very important. The paper in [7] presents a definition
of Equivalence of Vector Access in order to infer the
on-chip storage for the data that need to be accessed
redundantly from external memory. The paper in [8]
has a similar work on the automatic derivation of data
FIFO. Although two metrics are created in [8] to guide
the selection of which direction vector to exploit reuse
and determine the number and length of data FIFO,
the on-chip storage inferred for a particular
application may require a very large chip area, thus it
is possible that the chip may not have an area large
enough to accommodate such on-chip storage. Also,
both works do not consider the computation cost.

Two basic steps of the optimal GTM design
methodology are to first enumerate, evaluate, and list
enough number of design options of UFs and FPGA
buffers, and then to select and combine some of them
to build the final design [2]. The design goal is to
obtain a GTM design on reconfigurable computer as
fast as possible in term of throughput under the
constraints of FPGA broad. This paper focuses on the
enumeration process of FPGA buffers. A way to list
these design options is to order them from the fastest
one to the slowest one in terms of throughput. A faster
UF has a higher throughput, or a smaller global data
introduction interval (II) in its pipelined design. A
procedure therefore has been developed to enumerate
and evaluate design options based on increasing II
divided by packing factor (PF). (PF is defined as the
number of image pixels in one memory location.
When packing, PF copies of BFs can be used to
compute at PF consecutive pixel locations.) During
the enumeration process, for a given pair of PF and II,
there are usually many designs that can be grouped
based on their memory access patterns (MAPs).
Therefore, there is a need to enumerate all MAPs for
all PFs and IIs.

This paper shows the design enumeration
process by relating FPGA buffers and UF synthesis

constraints, such as PF and II, to the MAP. A
domination relation is defined among MAPs based on
measures such as FPGA buffer size, number of
memory ports, and memory size. If a MAP is
dominated by other MAPs, it is not a candidate for
further examination. Algorithms to prune MAPs and
to enumerate all non-dominated MAPs are developed
so that the design space can be explored
systematically and efficiently.

Section 2 describes MAPs and FPGA buffer
designs. Section 3 presents measures of MAPs and an
algorithm to enumerate all the non-dominated MAPs.
Section 4 presents two pruning processes to reduce the
number of MAPs that need to be subjected to the
domination consideration. Section 5 gives
experimental results that demonstrate the effectiveness
of the proposed techniques, and a simple example that
shows the whole optimization process of GTM design.
Section 6 concludes the paper.

2 MAPs and FPGA Buffers
As shown in Figure 1, there are two basic

components in a GTM design, an FPGA buffer and a
UF. An FPGA buffer can be measured by its area and
the initial buffer filling time. A UF can be measured
by its FPGA area and the computation time in terms of
scheduling length (SL), II and PF. The measures of
both components can be affected by different MAPs.
In addition, different MAPs may lead to significantly
different memory sizes.

2.1 MAPs

For the readability, notations used in the paper
are listed in the following table. Some of them are
explained latter.
αW Frequency of a Write Operation
BDATA No. of Bits on Image Pixel
CIMG No. of Image Columns
CWIN No. of Columns of Template Window
IIMIN Minimum II
IIUB Upper Bound of II
NAP No. of Active Points of BF
NLB No. of Line Buffers
NLB(P) Number of Line Buffers for Port P
NMP No. of Memory Ports on Chip
NMW No. of Memory Writes of BF
NNMAP Number of Non-Dominated MAPs
NP No. of Ports used (NP≤NMP)
NR(P) No. of Reads from Port P.
NPMAP No. of Pruned MAPs
NR No. of Reads in II Cycles
NW No. of Writes in II Cycles
NW(P) No. of Writes to Port P.
RIMG No. of Image Rows

 3

RWIN No. of Rows of Template Window
SM Size of Required Memory
SM(P) Size of Required Memory by Port P
SMAP(PF,II) Set of MAPs for Given PF and II
SMAP(PF) Set of MAPs for Given PF
SNMAP(PF) Set of Non-Dominated MAPs
WMP Width of Memory Port in Bits

For a given pair of PF and II, a MAP includes

the following information.
• The number of memory ports used (NP), which

should be less than or equal to NMP.
• The number of memory reads (NR(p)) from each

memory port, p, (1≤p≤NP) in the II clock cycles.
The vector (NR(1), NR(2),…, N R(NP)) is called the
memory reading pattern.

• The number of memory writes (NW(p)) to each
memory port, p, (1≤p≤NP) in II clock cycles. The
vector (NW(1), NW(2),…, N W(NP)) is called the
memory writing pattern.
The set of MAPs for given PF and II is denoted

as SMAP(PF,II). Intuitively, a MAP in SMAP(PF,II) can
be represented as a rectangle with NP×II cells. Each
cell is labeled with R for reading, W for writing, or I
for idling. A row of cells stands for memory accesses
of one memory port, and a column of cells stands for
the memory accesses in one particular clock cycle. For
example, when PF=2, II=4, NMW=1, and NMP=4, there
may exist a MAP as shown in the following table, in
which two memory ports are used (NP=2), the memory
reading pattern is (3,2) and the memory writing
pattern is (1,1), where the first row is for memory port
1 and the second for memory port 2.

Assume that NR and NW are the total number of

memory reads and writes in II clock cycles of a MAP,
respectively. Then the MAP has to satisfy the
following constraints.

The requirement of NR(p)+NW(p)>0 means that

the memory port considered in a MAP has at lease one
read or one write operation. Note that the total
number of writings, NW, is fixed for given PF, while
the total number of readings, NR, can be changed in a

specific range. Also note that different NR and reading
patterns require different FPGA buffers, which is
explained in the FPGA buffer section.

PFs can be calculated by

All possible II also can be determined by

The minimum IIMIN corresponds to using all

memory ports and reading only once in a BF
evaluation. The upper bound IIUP corresponds to using
only one memory port and reading all active points in
a BF evaluation.

2.2 FPGA Buffers

When NR < NAP, the computation unit has to get
some of the image data from inside the FPGA chip.
Therefore there is a need for FPGA buffers. In order
to support the function-level parallelism, the data
within the template window are buffered inside FPGA
as window moves. When NR is less than RWIN, (RWIN -
NR) rows (lines) of image data must be also buffered
inside FPGA. The buffer for an image line is called an
image line buffer.

An FPGA buffer example is shown in Figure 2.
It uses two memory ports. Port one supports two rows
of image data and provides one image pixel during II
clock cycles. Port 2 supports three rows and provides
two pixels during II clock cycles. Both memory ports
need to buffer one image line aside from data inside
the template.

The buffer design is to provide such FPGA

buffers when 1≤NR≤RWIN. When NR=RWIN, there is no
need for image line buffers. When NR=NAP, there is no
need for any buffering unless the memory packing
scheme is considered. In that case, an FPGA buffer is
still needed to support multiple BF copies for
“random” accesses of active points [2]. No buffering

APNRNWINRRN

PFMWNWNMPNPN
PNpWNpRN

PNpWNpRN

PN

p
pWNWN

PN

p
pRNRN

=≤≤

×=≤≤

=≤+<

=≥≥

∑
=

=∑
=

=

or 1

 and 1

,...2,1 II,(p))(0

,...2,1 0,(p) and 0)(

1
)(and

1
)(

Template
Window

Shift Register

Shift Register

Shift Register

Shift Register

Image Line Buffer

Image Line Buffer

Memory Port 2

Memory Port 1

Shift Register

Figure 2: An FPGA Buffer Example

)/(
2

log0 ,
b

2 DATABMPWbPF ≤≤=

PFMWNAPNUBII

MPNPFMWNMINII

UBIIIIMINII

×+=

×+=

≤≤

 /)1(

R R R W

 R R W I

 II

NP

 4

strategy is considered for RWIN < NR < NAP because of
the complicated memory controller design and
relatively few performance benefits.

One of the FPGA buffer design issues is to
determine the number of image rows each memory
port is supposed to provide. The basic idea is to
distribute (RWIN-NR) image rows almost equally
among memory ports to balance the workload of the
initial buffer filli ng.

3 Non-Dominated MAPs
The MAPs can be evaluated with the following

four quality measures. The first measure is the number
of image line buffers (NLB) defined as RWIN-NR. The
second is the number of memory port (NP). The third
is the initiation interval (II) . The last measure is the
memory size requirement (SM).

where SM(p) is the required memory size for memory
port p (1≤p≤NP) as defined as

Let

 Definition: For two MAPs A and B in

SMAP(PF), A dominates B if A’s NL ≤ B’s NL, and A’s
NP ≤ B’s NP, and A’s SM ≤ B’s SM, and A’s II ≤ B’s II .

From this definition, when A dominates B, A is
better than B in all four measures. Therefore, there is
no need to consider B for an optimal design. In other
words, B can be eliminated during the enumeration of
UF design options.

If a MAP in SMAP(PF) is not dominated by any
other element in SMAP(PF), it is considered non-
dominated. The set of all the non-dominated elements
in SMAP (PF) is denoted as SNMAP(PF). The set of all
the non-dominated elements in SMAP(PF, II) is denoted
as SNMAP(pf, II) . The following algorithm is a brute-
force procedure of finding SNMAP(PF) from a given
SMAP(PF).

Algorithm: Finding SNMAP(PF) from SMAP(PF).

Note that SMAP(PF) needs to be found before the
algorithm can be applied which in turn requires the
enumeration of SMAP(PF,II) for each II . The set
SMAP(PF,II) can be enumerated by iterating through all
NR and NP, and in each iteration, finding reading
patterns that satisfy the (3.1) constraints and finding
writing patterns that satisfy the (3.2) constraints. That
is,

In the above formulation, the memory port

ordering is ignored because it does not influence
design optimality. This assumption cuts down the
number of reading patterns and leads to

The following constraint is assumed for a similar

reason. For 1≤p≤NP-1,

Note that this enumeration process grows very

fast. The equation in (3.1) corresponds to the integer
partition problem. There is no general formula to
express the number of such partitions. But, for a fixed

NR, the growth of the number is))1(
(

−PN
RNθ [3].

The equation in (3.2) can lead to even more partitions
because the order of writing cannot be ignored after
the order of reading is fixed. Therefore, although the
solutions to the constraints (3.1) and (3.2) can be
enumerated directly, it is a good idea to combine the
SMAP(PF) enumeration process with the following
pruning process so that the enumeration process can
avoid most of the dominated MAPs.

4 MAP Pruning
The MAP pruning process includes the reading

pattern pruning and writing pattern pruning.
4.1 Reading Pattern Pruning

Some reading patterns can be pruned because
they cannot lead to a non-dominated MAP.

Definition: A minmax decomposition of an
integer n with respect to another integer q is (i1, i2, …,
iq) that minimizes i1 subject to

=×
≠×+

=
0)(when)(

0)(when)(1
)(

pRNWpWN

p
R

NWp
W

N
pMS α

α

}1:)(max{ PNppMSMS ≤≤=

≥≥≥≥≥

∑
=

=

0)()2()1(

1
)(

 (3.1)

PNRNRNRNII

PN

p
RNpRN

�

−=

+≥⇒+=

=≤+≤≤

∑
=

=
=

1,...,2,1

),1()()1()(

 ,....2,1,)()(1 and)(0

1
)(

 (3.2)

PNp

pWNpWNpRNpRN
PNpIIpWNpRNpWN

P
Np

p MNpWN

} {a}; (PF)NMAPS (PF)NMAPS

 then true nd if

}}false; nd ; {a}-(PF)MAPS (PF)MAP{S

 then a dominates e if else

{e};-(PF)MAPS (PF)MAPS then e dominates a if

{ truend andTemp_Set eeach for

 true; nd

{a};- (PF)MAPS Temp_Set (PF);MAPS apick

{
�
 (PF)MAPS While

;
�
 (PF)NMAPS

∪=
==

==

=
==∈

=

=∈

≠

=

1...21

1

≥≥≥≥

=∑
=

qiii

n
q

j ji

) to1 (for

)(or)R to1 (for

MPNPN
APNRNWINRN

=

==

0)()2()1(≥≥≥≥≥ PNRNRNRNII �

)1()()1()(+≥⇒+= pWNpWNpRNpRN

 ,...}3,2,1 :),({)(== IIIIPFMAPSPFMAPS

 5

For an integer n, there are a total of n minmax
decompositions with respect to q=1, 2, …, n,
respectively. For example, assume n=4, the four
minmax decompositions are (1,1,1,1), (2,1,1), (2,2),
and (4). As another example, if n=17 and q=3, then
the minmax decomposition is (6,6,5).

Given a MAP A, its reading pattern is denoted as
PA(R)=(NR(1), NR(2), …, N R(NP)) that satisfies (3.1).
Assume that NR(q) ≠0 and NR(q+1)=0 and that
(N’R(1), N’R(2), …, N’ R(q)) is the minmax
decomposition of NR with respect to q. Then the MAP
A can be transformed to another MAP T(A) such that
the reading pattern PT(A)(R) = (N’R(1), N’R(2), …,
N’R(q), 0, 0, …, 0). Note that the writing pattern of
T(A) may be different from that of A.

Theorem 1: T(A) dominates A.
The proof is omitted because of the space.
This theorem allows the pruning of huge number

of reading patterns because, given NR, only the
minmax decomposition needs to be considered. Given
NP, NR, and II, a typical MAP with a reading pattern
that contains a minmax decomposition of NR with
respect to q (1≤q≤ NP) is as follows.

4.2 Writing Pattern Pruning

After the reading pattern pruning, the next step is
to prune writing patterns. For this purpose, reading
patterns can be classified into seven types. The idea is
to minimize the memory size (SM) of a MAP by
arranging writing patterns for each type of reading
patterns separately, and then reducing II or NP without
changing SM. The pruning algorithm is presented for
only two types of reading patterns because of the
space.

Case1: The reading pattern is shown as follows,
where NR(i)=II for
1≤i≤q and NR(j)=0 for
q<j≤ NP (1<q<NP).
Assume the writing
pattern is as shown at
the bottom of the
figure. The pattern
can be pruned if one
of the following two
conditions holds.

Otherwise, the MAP gets the minimum SM for the
given reading pattern.

(1) bx <
(2) There is a y>0 such that x+y≤II, (x+y)×α ≤1,

and x-b ≤ y∗(bm-1).
Case 2: The reading pattern is shown as follows,

where NR(i)=r for 1≤i≤q and NR(j)=0 for q<j≤ NP
(1<r<II and 1<q<NP). The writing pattern can be
viewed as two parts, one at the right of the reading
pattern and the other
below that. In order to
get the minimum SM,
memory ports in each
part has to have
"balanced" numbers of
memory writes (as
shown in the figure).
The ranges of x and y
are 0≤x≤II-NR(1) and
1≤y≤ II. From those
values of x and y, the (x,
y) pair that leads to the
minimum SM is to be
found. If the maximum
value of x and y in that pair is less than II, then the
pattern can be pruned.

Theorem 2: No MAP in the pruned SMAP(PF, II)
(after applying writing pattern pruning) can be
dominated by an element in SMAP(PF, II’) with II’ less
than II.

The basic idea of pruning SMAP(PF) is to prune
each SMAP(PF, II) in the increasing order of II.
Theorem 2 ensures that each element in the pruned
SMAP(PF, II) cannot be dominated by an element in
SMAP(PF, II’) with II’ < II. Therefore, the S NMAP(PF)
can be obtained by computing each SNMAP(PF, II)
separately.

By using the above two pruning processes, one
for reading patterns and the other for writing ones,
enumerating the pruned SMAP(PF, II) can be finished
in polynomial time. For each NR and NP, the reading
patterns can be enumerated in linear time to NR, and
for each reading pattern, the writing patterns can be
determined in a polynomial time with respect to NP,
NW and II. Therefore, the total computational time
complexity is polynomial to the problem size.

5 Experimental Results
5.1 Efficiency of Pruning Algorithm

The proposed pruning and enumeration
algorithm and the algorithm to find SNMAP(PF) from
SMAP(PF) have been implemented in a C++ program.
Also, a dynamic programming algorithm that solves
the integer partition problem (Constraints (3.1) and

Reading
Pattern

x y

bm
b

Reading
Pattern

x

y
II

Reading
Pattern

II

NP

 6

(3.2)) has been developed and implemented to
compute SMAP(PF). Two experiments were performed.

In the first experiment, assume that NMP=4,
WPORT =32, BDATA=8, NMW=2, and αW=1.0. For
several different RWIN and NAP, the number of MAPs
after pruning (NPMAP) and the number of non-
dominated MAPs (NNMAP) are counted. The results are
summarized in the following table, where the
computation time is in seconds.

The table shows that the algorithm is very

effective and the computation time is within tens of
seconds for typical sizes of GTM operations. The last
column of the table shows that after pruning, about
40%-50% of MAPs are non-dominated. Therefore, the
algorithm to find SNMAP(PF) removes around 50%-
60% of MAPs after pruning.

The second experiment is to compare the
algorithms with or without pruning. In this
experiment, assume NMP=4, WPORT =32, BDATA=8,
NMW=1, and αW=1.0. In the following two tables, the
first one lists the results with pruning and the second
without. It can be observed that the number of MAPs
(NMAP) without pruning is much larger than the
corresponding NPMAP, and the ratio of NMAP to NPMAP

increases significantly as the problem size increases.
That would explain the same trend for the
computation times.

WWIN NAP NPMAP Time
3 9 72 0.02
9 20 214 0.06
15 30 346 0.17

WWIN NAP NMAP Time
3 9 4032 1.48
9 20 61133 30.59
15 30 285966 252.38

It is worth mentioning that the values of NMAP
shown in the second table are lower bounds of MAPs.
When solving the constraints (3.1) and (3.2) for NR’s

and NP’s, the following extra constraint is
incorporated to reduce the size of the solution space
(SMAP(PF)).

5.2 GTM Optimal Mapping
This section presents a simple example to show

the steps to explore GTM design space and find the
fastest (highest throughput) design. In this example, it
is assumed that the FPGA board has only one FPAG
chip (Xilinx 4000 series) with only one memory port,
and that CIMG=360, RWIN=3, CWIN=4, NAP=9, NMW=1,
αW=1.0, WMP=16, and BDATA=8. The BF is simply a
function summing up nine active points in the
template window.

The first step is to get all non-dominated MAPs
and list them in the increasing order of II/PF as
follows. Note that the smaller II/PF a design has, the
higher the throughput is.

The second step is to compute the buffer and

synthesize the BF dataflow graph to get the UF for
each MAP in the list. The third step is to select UFs
and assign FPGA board resources such as memory
ports and FPGA chips them to get the final GTM
design. Because there is a single FPGA and a single
memory port, the GTM design is composed of only
one UF associated with possible buffer. Therefore, in
this simple example, the third step is trivial.

After computing the buffer area and the UF area
for each MAP in the above order. The first MAP
whose corresponding design’s area is less than t he
FPGA area is the fastest design. Assume the FPGA
has 720 CLBs, the following area information implies
the fourth map corresponds an optimal design.

Buffer Area UF Area Total Area
680 408 1088
474 404 878
548 216 764
264 376 640

The above buffer areas are computed according

to an approximate formula. The UF area is obtained
from the datapath generated by synthesizing the
dataflow graph of the BF. Each node in the datapath

RWIN NAP NPMAP NNMAP Time NNMAP
NPMAP

3 9 96 50 0.06 52%
9 20 288 130 0.17 45%
25 45 816 351 0.66 38%
45 65 1492 632 2.14 42%
65 75 2169 915 4.89 42%
85 95 2845 1199 10.22 42%
105 115 3522 1481 19.11 42%
125 135 4199 1765 33.28 42%

PF II MAP Buffer Type
2 3 RWW Full/Packing
2 4 RRWW Hybrid/Packing
1 2 RW Full
2 5 RRRWW Partial/Packing
1 3 RRW Hybrid
1 4 RRRW Partial
2 11 RRRRRRRRRWW Internal
1 10 RRRRRRRRRW No

1−+≥+ PNIIWNRN

(b) Without Pruning

(a) With Pruning

 7

corresponds to one component in the library that
contains the area. Note the UF controller area is not
added at the current stage.

6 Conclusions
This paper presents the concept of memory

access patterns (MAPs) and the measures to evaluate
the MAPs. The relations among MAPs, FPGA buffers,
and unit function designs are studied. Algorithms to
prune and enumerate all non-dominated MAPs are
given so that the FPGA GTM design space can be
explored systematically and efficiently.

This work represents an important step in GTM
optimal mapping on reconfigurable computers. At
Wright State University, a VHDL generator for FPGA
buffers has be developed to generate VHDL file
automatically according to several design parameters
including MAPs. The unit function synthesis
algorithms have also been created and implemented to
provide pipelined designs of the unit function (UF).
After getting these building blocks of GTM designs,
an FPGA board resource binding and image region
partitioning can be performed. Finally an interface
tool still under development will generate steering
logic and interface controllers to get an optimal GTM
design.

7 References
[1] Xuejun Liang, Jack Jean and Karen Tomko, "Data
Buffering and Allocation in Mapping Generalized
Template Matching on Reconfigurable Systems", to
appear in the Journal of Supercomputing, Special
Issue on Engineering of Reconfigurable
Hardware/Software Objects
[2] Xuejun Liang and Jack Jean, "Interface Design for
the Matching of Generalized Template Matching on
Reconfigurable Systems", in Proceedings of
International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 159-165,
June 2000
[3] Donald L. Kreher and Douglas R. Stinson,
“Combinatorial Algorithms: Generation, Enumeration,
and Search”, CRC Press, 1998
[4] C. Thibeault and G. Begin, “A Scan -Based
Configurable, Programmable, and Scalable
Architecture for Sliding Window-Based Operations”,
in IEEE Transactions on Computers, pp. 615-627,
1999
[5] Bernard Bosi, Guy Bois and Yvon Savaria,
"Reconfigurable Pipeline 2-D Convolvers for Fast
Digital Signal Processing", in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp.
299-308, Vol. 7, No. 3, 1999
[6] M. Rencher, and B. L. Hutchings, "Automated
Target Recognition on Splash 2," in IEEE Symposium

on FPGA Custom Computing Machines, pp. 192-200,
April 1997.
[7] Markus Weinhardt and Wayne Luk, "Memory
Access Optimization and RAM Inference for Pipeline
Vectorization", in Proceedings of FPL' 99, pp.61-70,
1999
[8] Pedro Diniz and Joonseok Park, "Automatic
Synthesis of Date Storage and Control Structures for
FPGA-based Computing Engines", in IEEE
Symposium on Field Programmable Custom
Computing Machines, 2000

