Memory AccessPattern Enumerationin GTM
Mapping onRemnfigurable Computers

Xuejun Liang and Jadk Jean
Department of Computer Science and Engineaing
Wright State University
(xliang, jjean)@cs.wright.edu

Abstract: Generalized template matching (GTM)
operations can be accéerated using remnfigurable
systems with field programmable gate aray (FPGA)
hardware resources. The GTM operation involves
intensive memory accesses when image is gored off-
chip. FPGA designs that use diff erent memory access
patterns (MAPs) tend to have big differencesin
performance and hardware resource requirements. To
ohtain an optimal GTM FPGA design, thereisanedl
to enumerate design options based on the MAPs.
Some measures to evaluate MAPs in terms of the
performance and the required hardware resources are
introduced. Algorithmsto prune MAPs and to
enumerate dl non-dominated MAPSs are propcsed so
that the design space ca be explored more dficiently.

Keywords: Generalized Template Matching,
Configurable Computing, Field Programmable Gate
Array (FPGA), Design Automation and Optimization

1 Introduction

The generalized template matching (GTM) [1]
operations include image-processng algorithms for
2D digit filtering, morphologic operations, motion
estimation, and template matching. Mapping GTM
operations on reconfigurable computers automaticaly
and optimally is desirable.

The computation of a GTM operation isto move
atemplate (or mask) pixel by pixel in scanningline
order, simil ar to the “ Sliding Window-Based
Operations’ (SWO) asin [4]. In GTM atemplate may
be quite “sparse” and only alow percentage of pixels
ina“window” isinvolved in the computation. The
GTM computation can be formulated as a nested loop.
The computation iterates throughimage regions,
templates, and pixel locaions. The loop bog
computation, cdled the Basic Function (BF), involves
applying one template window at one image pixel

locdion. Theimage region isaset of conseautive
image rows. The image pixelsin the template window
that are used for the BF evaluation are cdled adive
points. A functional unit design, cdled the unit
function (UF), for the GTM operation consists of one
or more wpies of BFsas sown in Figure 1. The BFs
compute in parall el either at several conseautive pixel
locaions or for several templates. It isalso passhble to
have multiple UFsinside asingle FPGA chip.

MEM MEM
A

FPGA v \ 4
FPGA Buffer

vy v

Unit Function
BF BF

Figure 1: Buffer and Unit Function

In Figure 1, using buffersto buffer image pixels
inside the FPGA chip serves two purposes: (1) it can
reduce redundant memory accesss as the template
window moves, and (2) it can provide more datain
parall el to a UF than limited memory ports can.
However, the FGPA buffer requires more FPGA area
This tradeoff can be explored by examining diff erent
memory accesspatterns.

There have been many research works about the
use of data buffers to speed up appli cations. For
example, areoonfigurable pipeline 2-D convolver
designin [5] includes gorage (shift registers) for pixel
values contained in delay line and for convolution
window. Because of these shift registers, the
convolution can be caried out for one pixel locaion

each clock period. For another example, the
researchers[6] at BY U in their implementation of an
automated target recognition algorithm uses data
buffers so that the correlations can be computed
column by column, and sums up the partial sumsfor
all columns of template. In this method, all column
correlations are computed in parallel but only one
column of data needs to be available for processing.
Note that the former approach buffers more data, and
therefore has higher throughput, than the latter
approach. But, the former approach needs more circuit
area. The tradeoff of speed and areais not addressed
in their works.

Since for many applications (including GTM
operations) the throughput of the reconfigurable
coprocessor is determined by the external memory
accesses, the external memory access optimization is
very important. The paper in [7] presents a definition
of Equivalence of Vector Accessin order to infer the
on-chip storage for the data that need to be accessed
redundantly from external memory. The paper in [8]
has a similar work on the automatic derivation of data
FIFO. Although two metrics are created in [8] to guide
the selection of which direction vector to exploit reuse
and determine the number and length of data FIFO,
the on-chip storage inferred for a particular
application may require a very large chip area, thus it
is possible that the chip may not have an arealarge
enough to accommodate such on-chip storage. Also,
both works do not consider the computation cost.

Two basic steps of the optimal GTM design
methodology areto first enumerate, evaluate, and list
enough number of design options of UFs and FPGA
buffers, and then to select and combine some of them
to build the final design [2]. The design goal isto
obtain aGTM design on reconfigurable computer as
fast as possible in term of throughput under the
constraints of FPGA broad. This paper focuses on the
enumeration process of FPGA buffers. A way to list
these design options isto order them from the fastest
one to the slowest one in terms of throughput. A faster
UF has a higher throughput, or a smaller global data
introduction interval (1) in its pipelined design. A
procedure therefore has been developed to enumerate
and evaluate design options based on increasing |1
divided by packing factor (PF). (PF is defined as the
number of image pixelsin one memory location.
When packing, PF copies of BFs can be used to
compute at PF consecutive pixel locations.,) During
the enumeration process, for agiven pair of PFand I1,
there are usually many designs that can be grouped
based on their memory access patterns (MAPS).
Therefore, thereis a need to enumerate all MAPs for
al PFsand lls.

This paper shows the design enumeration
process by relating FPGA buffers and UF synthesis

constraints, such as PF and 1, to the MAP. A
domination relation is defined among MAPs based on
measures such as FPGA buffer size, number of
memory ports, and memory size. If aMAPis
dominated by other MAPs, it is not a candidate for
further examination. Algorithmsto prune MAPs and
to enumerate all non-dominated MAPSs are devel oped
so that the design space can be explored
systematically and efficiently.

Section 2 describes MAPs and FPGA buffer
designs. Section 3 presents measures of MAPs and an
algorithm to enumerate all the non-dominated MAPs.
Section 4 presents two pruning processes to reduce the
number of MAPs that need to be subjected to the
domination consideration. Section 5 gives
experimental results that demonstrate the effectiveness
of the proposed techniques, and a simple example that
shows the whole optimization process of GTM design.
Section 6 concludes the paper.

2 MAPsand FPGA Buffers

As shown in Figure 1, there are two basic
componentsin aGTM design, an FPGA buffer and a
UF. An FPGA buffer can be measured by its area and
theinitial buffer filling time. A UF can be measured
by its FPGA area and the computation time in terms of
scheduling length (SL), |1 and PF. The measures of
both components can be affected by different MAPs.
In addition, different MAPs may lead to significantly
different memory sizes.

21 MAPs

For the readability, notations used in the paper
arelisted in the following table. Some of them are
explained latter.

Oy Frequency of a Write Operation
Boata No. of Bits on Image Pixel

Civc No. of Image Columns

Cwin No. of Columns of Template Window
Hvin Minimum [l

Iy Upper Bound of |1

Nap No. of Active Points of BF

Nig No. of Line Buffers

N g(P) Number of Line Buffers for Port P
Nup No. of Memory Ports on Chip
Numw No. of Memory Writes of BF
Nnmvap Number of Non-Dominated MAPs
Np No. of Ports used (Np<Nyp)

Ng(P) No. of Reads from Port P.

Npuvap No. of Pruned MAPs

Ng No. of Readsin Il Cycles

Nw No. of Writesin |l Cycles

Nw(P) No. of Writesto Port P.

Rime No. of Image Rows

Rwin No. of Rows of Template Window
Swv Size of Required Memory
Su(P) Size of Reguired Memory by Port P

Svap(PF,11) | Set of MAPs for Given PF and |1

Svar(PF) Set of MAPs for Given PF
Sumar(PF) | Set of Non-Dominated MAPs
Wwp Width of Memory Port in Bits

For agiven pair of PF and II, aMAP includes
the following information.

e The number of memory ports used (Np), which
should be less than or equal to Nyp.

* The number of memory reads (Ng(p)) from each
memory port, p, (1=p<Np) inthe |l clock cycles.
The vector (Ng(1), Nr(2),.., N r(Np)) iscalled the
memory reading pattern.

* The number of memory writes (Nw(p)) to each
memory port, p, (1=<p<Np) in Il clock cycles. The
vector (Nw(1), Nw(2),.., N w(Np)) iscalled the
memory writing pattern.

The set of MAPsfor given PF and 1l is denoted
as Syap(PF,I1). Intuitively, aMAP in Syap(PF,I1) can
be represented as a rectangle with NpxI1 cells. Each
cell islabeled with R for reading, W for writing, or |
for idling. A row of cells stands for memory accesses
of one memory port, and a column of cells stands for
the memory accesses in one particular clock cycle. For
example, when PF=2, 11=4, Ny,w=1, and Ny=4, there
may exist aMAP as shown in the following table, in
which two memory ports are used (Np=2), the memory
reading patternis (3,2) and the memory writing
patternis (1,1), where the first row is for memory port
1 and the second for memory port 2.

A R R R W
Np
v | R R W | |

Assume that Ng and Ny are the total number of
memory reads and writesin Il clock cycles of aMAP,
respectively. Then the MAP hasto satisfy the
following constraints.

Ng= T Na(p) o Ny = 3 Ny (8
p=1 p=1
NR(p)=0and Ny, (P) =20, p=12..Np

0< NR(p) + NW(p) <lIl, p :l,2,...NP
1<Np <Npyp and Ny, =Ny *PF
1SNRSPW|N or NR:NAP

The requirement of Nr(p)+Nw(p)>0 means that
the memory port considered in aMAP has at lease one
read or one write operation. Note that the total
number of writings, Ny, is fixed for given PF, while
the total number of readings, Ng, can be changed in a

specific range. Also note that different N and reading
patterns require different FPGA buffers, which is
explained in the FPGA buffer section.
PFs can ke calculated by
PF=2",0<bslog_(Wyp/BpaTa)
All possible |1 also can be determined by

iy <1< g
Tug = Nap * Nmw * PF

The minimum Iy corresponds to using all
memory ports and reading only oncein aBF
evaluation. The upper bound |1 p corresponds to using
only one memory port and reading all active pointsin
aBF evaluation.

2.2 FPGA Buffers

When Ni < Np, the computation unit hasto get
some of the image data from inside the FPGA chip.
Therefore there is aneed for FPGA buffers. In order
to support the function-level parallelism, the data
within the template window are buffered inside FPGA
as window moves. When Nrisless than Ry, (Rwin -
NR) rows (lines) of image data must be also buffered
inside FPGA. The buffer for animagelineis called an
image line buffer.

An FPGA buffer exampleis shown in Figure 2.
It uses two memory ports. Port one supports two rows
of image data and provides one image pixel during |1
clock cycles. Port 2 supports three rows and provides
two pixelsduring Il clock cycles. Both memory ports
need to buffer one image line aside from datainside
the template.

Shift Register |«

Image Line Buffer 4—‘

Memory Port 1

Shift Register |«

Shift Register |

Image Line Buffer 4—‘

Shift Register |« Memory Port 2

Shift Register |«

Template

Figure 2: An FPGA Buffer Example

The buffer design is to provide such FPGA
buffers when 1<Ng<Rwn. When Ng=Ryn, thereis no
need for image line buffers. When Nr=N4p, thereis no
need for any buffering unless the memory packing
schemeis considered. In that case, an FPGA buffer is
still needed to support multiple BF copies for
“random” accesses of active points[2]. No buffering

strategy is considered for Ryn < Nr < Nap becaise of
the compli cated memory controll er design and
relatively few performance benefits.

One of the FPGA buffer designisalesisto
determine the number of image rows ea¢ memory
port is sipposed to provide. The basic ideaisto
distribute (Ryin-Ng) image rows almost equally
among memory portsto balance the workload of the
initial buffer filli ng.

3 Non-Dominated MAPs

The MAPs can be evaluated with the foll owing
four quality measures. The first measure is the number
of image line buffers (N g) defined as Ryn-Ng. The
seoond is the number of memory port (Np). The third
istheinitiation interval (I). The last measureisthe
memory sizerequirement (Sy).

Sy =max{Sy, (p):1< p< NP}

where Sy(p) isthe required memory sizefor memory
port p (1=p<Np) as defined as
g2+ NW(p)an when NR(p) z0

Su (p):g Ny (P)xayy when N(p) =0

Definition: For two MAPsA and B in
Svar(PF), A dominatesB if A’sN . <B’sN;,and A’s
Np<B'sNp,and A’'sSy <B'sSy, and A'sll < B’slI.

From this definition, when A dominates B, A is
better than B in al four measures. Therefore, thereis
no need to consider B for an optimal design. In other
words, B can be diminated during the enumeration of
UF design options.

If aMAP in Syap(PF) isnot dominated by any
other element in Syap(PF), it is considered non-
dominated. The set of al the non-dominated elements
in Syap (PF) is denoted as Symap(PF). The set of all
the non-dominated elementsin Syap(PF, 1) is denoted
as Symap(pf, 11). The following algorithmis a brute-
force procedure of finding Symap(PF) from agiven
Suar(PF).

Algorithm; Finding Symap(PF) from Syap(PF).

Snmap (PP =@
While Sy, » 5(PF) 20{

pickalS, o p(PF); Temp_Set =S, , o(PF) -{a};
nd = true;
for each ed Temp_Set and nd == true {
if adominatesethen Sy ; n(PF) =S, , p(PF) -{€};
elseif edominatesathen
{SMAP(PF) =SMAP(PF) -{a};nd=fase}}
if nd ==truethen
Snmap(P) = SymapPP) Dia}

Note that Syap(PF) needsto be found before the
algorithm can be gplied which in turn requires the
enumeration of Syap(PF,11) for ead II. The set
Svar(PF,11) can be enumerated by iterating throughall
Nr and Np, and in ead iteration, finding reading
patterns that satisfy the (3.1) constraints and finding
writi ng patterns that satisfy the (3.2) constraints. That
is,

for(NR =1to RWIN) or (NR = NAP)
for(NP =1to NMP)

(31 Op=1
Al 2Ng@ 2N ()2 2NR(Np) 20
Op=N
é pzzl Ny (P) =Ny
(32) <Ny (p) and 1< NR(p)+ Ny (p) <11, p=12,...Np
ANR(P) = NR(P+D 0 Ny (P) = Ny, (p+D),
Hp=12..Np-1
In the &ove formulation, the memory port
orderingisignored because it does not influence
design optimality. This asauumption cuts down the
number of reading patterns and leads to
Il=2NR@®=NR(@2) =+ 2NR(Np)=0
The foll owing constraint is assumed for asimilar
reason. For 1<p<Ng-1,
NR(P) =NR(p+1) O Ny (p) = Ny (p+D
Note that this enumeration processgrows very
fast. The equation in (3.1) corresponds to the integer
partition problem. There is no general formulato
expressthe number of such partitions. But, for a fixed

Ng, the growth of the number is 6(N R(Np_l)) [3].

The equation in (3.2) can lead to even more partitions
because the order of writing cannot be ignored after
the order of reading is fixed. Therefore, although the
solutions to the constraints (3.1) and (3.2) can be
enumerated directly, it is agood ideato combine the
Svar(PF) enumeration process with the following
pruning process so that the enumeration process can
avoid most of the dominated MAPs.

4 MAP Pruning

The MAP pruning process includes the reading
pattern pruning and writing pattern pruning.
4.1 Reading Pattern Pruning
Some reading patterns can be pruned because
they cannot lead to a non-dominated MAP.
Definition: A minmax decomposition of an
integer n with respect to another integer qis (iy, iy, ..,
ig) that minimizesi, subject to
g ii=n
=)
i12i22...2iq >1

For an integer n, there are atotal of h minmax
decompositions with respect to g=1, 2, .., n,
respectively. For example, assume n=4, the four
minmax decompositions are (1,1,1,1), (2,1,1), (2,2),
and (4). As another example, if n=17 and g=3, then
the minmax decomposition is (6,6,5).

Given aMAP A, itsreading pattern is denoted as
Pa(R)=(Nr(1), Nr(2), .., N r(Np)) that satisfies (3.1).
Assume that Nk(q) #0 and Nr(g+1)=0 and that
(N'r(D), N'r(2), .., N’ r(Q)) isthe minmax
decomposition of N with respect to g. Then the MAP
A can be transformed to another MAP T(A) such that
the reading pattern Pra)(R) = (N'r(1), N'r(2), ..,
N’r(q), 0, O, .., 0). Note that the writing pattern of
T(A) may be different from that of A.

Theorem 1: T(A) dominates A.

The proof is omitted because of the space.

This theorem allows the pruning of huge number
of reading patterns because, given Ng, only the
minmax decomposition needs to be considered. Given
Np, Ng, and I1, atypical MAP with areading pattern
that contains a minmax decomposition of N with
respect to g (1<g< Np) isasfollows.

4.2 Writing Pattern Pruning

After the reading pattern pruning, the next step is
to prune writing patterns. For this purpose, reading
patterns can be classified into seven types. Theideais
to minimize the memory size (Sy) of aMAP by
arranging writing patterns for each type of reading
patterns separately, and then reducing 11 or Np without
changing Sy. The pruning algorithm is presented for
only two types of reading patterns because of the
space.

Casel: The reading pattern is shown as follows,
where Ng(i)=I1 for
1<i<q and Ng(j)=0 for
0<j< Np (1<g<Np).
Assume the writing
pattern is as shown at
the bottom of the
figure. The pattern
can be pruned if one
of the following two bm
conditions holds.

Otherwise, the MAP gets the minimum S, for the
given reading pattern.

(1) x<b

(2) Thereisay>0 such that x+y<ll, (x+y)xa <1,
and x-b < y[{bm-1).

Case 2: Thereading pattern is shown as follows,
where Ng(i)=r for 1<i<q and Ng(j)=0 for g<j< Np
(1<r<Il and 1<q<Np). The writing pattern can be
viewed as two parts, one at the right of the reading
pattern and the other
below that. In order to X |4
get the minimum Sy,
memory portsin each
part hasto have
"balanced”" numbers of
memory writes (as
shown in the figure).
Therangesof x andy
are 0<x<l-Ng(1) and
1<y<1l. Fromthose
values of x and y, the (X,):

y) pair that leadsto the
minimum Sy, isto be
found. If the maximum
value of x and y in that pair islessthan |1, then the
pattern can be pruned.

Theorem 2: No MAP in the pruned Syap(PF, 1)
(after applying writing pattern pruning) can be
dominated by an element in Syap(PF, I1") with 11" less
than 1.

The basic idea of pruning Syap(PF) isto prune
each Syap(PF, 1) in theincreasing order of I1.
Theorem 2 ensures that each element in the pruned
Suar(PF, I1) cannot be dominated by an element in
S\/IAP(PFv ”,) with II’ < Il. Therefore, the S NMAP(PF)
can be obtained by computing each Symap(PF, 1)
separately.

By using the above two pruning processes, one
for reading patterns and the other for writing ones,
enumerating the pruned Syap(PF, I1) can be finished
in polynomial time. For each Nk and Np, the reading
patterns can be enumerated in linear time to Ng, and
for each reading pattern, the writing patterns can be
determined in a polynomial time with respect to Np,
Ny and Il. Therefore, the total computational time
complexity is polynomial to the problem size.

5 Experimental Results

5.1 Efficiency of Pruning Algorithm
The proposed pruning and enumeration
algorithm and the algorithm to find Sywap(PF) from
Svar(PF) have been implemented in a C++ program.
Also, adynamic programming algorithm that solves
the integer partition problem (Constraints (3.1) and

(3.2)) has been developed and implemented to
compute Syar(PF). Two experiments were performed.
In the first experiment, assume that Ny =4,

Weort =32, Bpa1a=8, NMw=2, and aw=1.0. For
severa different Ry,n and Nap, the number of MAPSs
after pruning (Npwap) and the number of non-
dominated MAPs (Nywap) @re counted. The results are
summarized in the following table, where the
computation time is in seconds.

Rwin | Nap | Newap | Nnwap | Time | Nywap
Npvap

3 9 96 50 0.06 | 52%

9 20 | 288 130 017 | 4%

25 45 | 816 351 0.66 | 38%

45 65 | 1492 | 632 214 | 42%

65 75 | 2169 | 915 4.89 | 42%

85 95 | 2845 | 1199 | 10.22 | 42%

105 | 115 | 3522 | 1481 | 19.11 | 42%

125 | 135] 4199 | 1765 | 33.28 | 42%

The table shows that the algorithmis very
effective and the computation time is within tens of
seconds for typical sizes of GTM operations. The last
column of the table shows that after pruning, about
40%-50% of MAPs are non-dominated. Therefore, the
algorithm to find Sywap(PF) removes around 50%-
60% of MAPs after pruning.

The second experiment isto compare the
algorithms with or without pruning. In this
eXperI ment, assume NMF’:4! WPORT :32, BDATA:81
Nww=1, and ay=1.0. In the following two tables, the
first one lists the results with pruning and the second
without. It can be observed that the number of MAPs
(Nmap) Without pruning is much larger than the
corresponding Npyap, and the ratio of Nyap to Npyap
increases significantly as the problem size increases.
That would explain the same trend for the
computation times.

Wwin | Nap | Npwap | Time
3 9 72 0.02
9 20 | 214 0.06
15 30 | 346 0.17

(a) With Pruning

Wwin | Nap | Nmap Time
3 9 4032 1.48

9 20 | 61133 | 30.59
15 30 | 285966 | 252.38

(b) Without Pruning

It is worth mentioning that the values of Nyap
shown in the second table are lower bounds of MAPSs.
When solving the constraints (3.1) and (3.2) for Nr's

and Np's, the following extra constraint is
incorporated to reduce the size of the solution space

(Swar(PF)).
NR +Nyw =1l +Np -1

5.2 GTM Optimal Mapping

This section presents a simple example to show
the stepsto explore GTM design space and find the
fastest (highest throughput) design. In this example, it
is assumed that the FPGA board has only one FPAG
chip (Xilinx 4000 series) with only one memory port,
and that CIMG:360! RWIN:31 CWIN:4! NAp:9, NMW:11
ow=1.0, Wyp=16, and Bpa74=8. The BF issimply a
function summing up nine active points in the
template window.

Thefirst step isto get all non-dominated MAPs
and list them in the increasing order of I1/PF as
follows. Note that the smaller |1/PF a design has, the
higher the throughput is.

PF | I MAP Buffer Type
2 |3 | RWW Full/Packing

2 |4 | RRWW Hybrid/Packing
1 |2 |RW Full

2 |5 | RRRWW Partial/Packing
1 |3 | RRW Hybrid

1 |4 | RRRW Partial

2 | 11 | RRRRRRRRRWW | Interna

1 | 10 | RRRRRRRRRW No

The second step is to compute the buffer and
synthesize the BF dataflow graph to get the UF for
each MAP inthelist. Thethird step isto select UFs
and assign FPGA board resources such as memory
ports and FPGA chips them to get the final GTM
design. Because thereisasingle FPGA and asingle
memory port, the GTM design is composed of only
one UF associated with possible buffer. Therefore, in
this simple example, the third step istrivial.

After computing the buffer area and the UF area
for each MAP in the above order. The first MAP
whose corresponding design's areaisless than the
FPGA areaisthe fastest design. Assume the FPGA
has 720 CLBs, the following area information implies
the fourth map corresponds an optimal design.

Buffer Area | UF Area Total Area
680 408 1088
474 404 878
548 216 764
264 376 640

The above buffer areas are computed according
to an approximate formula. The UF areais obtained
from the datapath generated by synthesizing the
dataflow graph of the BF. Each node in the datapath

corresponds to one component in the library that
contains the area. Note the UF controller areais not
added at the current stage.

6 Conclusions

This paper presents the concept of memory
access patterns (MAPs) and the measures to evaluate
the MAPs. The relations among MAPs, FPGA buffers,
and unit function designs are studied. Algorithmsto
prune and enumerate all non-dominated MAPs are
given so that the FPGA GTM design space can be
explored systematically and efficiently.

Thiswork represents an important step in GTM
optimal mapping on reconfigurable computers. At
Wright State University, aVHDL generator for FPGA
buffers has be devel oped to generate VHDL file
automatically according to several design parameters
including MAPs. The unit function synthesis
algorithms have also been created and implemented to
provide pipelined designs of the unit function (UF).
After getting these building blocks of GTM designs,
an FPGA board resource binding and image region
partitioning can be performed. Finally an interface
tool till under development will generate steering
logic and interface controllersto get an optimal GTM
design.

7 References

[1] Xuejun Liang, Jack Jean and Karen Tomko, "Data
Buffering and Allocation in Mapping Generalized
Template Matching on Reconfigurable Systems', to
appear in the Journal of Supercomputing, Special

I ssue on Engineering of Reconfigurable
Hardware/Software Objects

[2] Xuejun Liang and Jack Jean, "Interface Design for
the Matching of Generalized Template Matching on
Reconfigurable Systems', in Proceedings of
International Conference on Parallel and Distributed
Processing Techniques and Applications, pp. 159-165,
June 2000

[3] Donald L. Kreher and Douglas R. Stinson,
“Combinatorial Algorithms: Generation, Enumeration,
and Search”, CRC Press, 1998

[4] C. Thibeault and G. Begin, “A Scan-Based
Configurable, Programmable, and Scalable
Architecture for Sliding Window-Based Operations’,
in |EEE Transactions on Computers, pp. 615-627,
1999

[5] Bernard Bosi, Guy Boisand Yvon Savaria,
"Reconfigurable Pipeline 2-D Convolvers for Fast
Digital Signal Processing”, in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp.
299-308, Vol. 7, No. 3, 1999

[6] M. Rencher, and B. L. Hutchings, "Automated
Target Recognition on Splash 2," in IEEE Symposium

on FPGA Custom Computing Machines, pp. 192-200,
April 1997.

[7] Markus Weinhardt and Wayne Luk, "Memory
Access Optimization and RAM Inference for Pipeline
Vectorization", in Proceedings of FPL' 99, pp.6170,
1999

[8] Pedro Diniz and Joonseok Park, "Automatic
Synthesis of Date Storage and Control Structures for
FPGA-based Computing Engines’, in IEEE
Symposium on Field Programmable Custom
Computing Machines, 2000

