Memory Access Scheduling and Loop Pipelining

Xuejun Liang* and Jack Jean**
*Department of Computer Science, Jackson State University
Xuejun.liang@ccaix.jsums.edu
**Department of Computer Science and Engineering, Wright State University
jiean@cs.wright.edu

Abstract: A memory access scheduling technique
is presented to avoid memory access conflicts in
a loop pipelining computation on reconfigurable
computers. The technique ensures that there is a
modulo schedule of a pipelined loop that can
achieve the minimum initiation interval of the
pipelined loop provided that there is no loop
carry dependency. Algorithms are presented to
produce such a schedule to control the access of
external memories. These algorithms have been
applied to an automated FPGA design tool at
Wright State University.

Keywords: Memory Access, Loop Pipelining,
Design Automation, Reconfigurable Computing,
and FPGA

1 Introduction

Loop pipelining is a common technique used
for the speedup of the loop computations in
reconfigurable systems. Modulo scheduling [1,2]
is a particular loop pipelining technique, with
which each iteration uses the same schedule and
consecutive iterations are initiated at a constant
rate, i.e. one initiation interval (11) apart. When
the Il is smaller than the latency of the loop body
schedule, there exists some degree of
overlapping between consecutive iterations. The
smaller the Il is, the higher the throughput of the
pipelined loop is. However, the minimum Il is
usualy restricted by the available hardware
components and the dependency among loop
iterations. In reconfigurable systems based on
FPGA chips, the concurrency of hardware
components can be very flexible. Specia
hardware components can be created according
to the need of a particular schedule. Therefore,

whenever there is enough areain the FPGA chip,
the hardware components may not be the
congtraint of the minimum 1. But, when the loop
body involves the external memory accesses,
because of the limited memory ports, the number
of external memory accesses becomes the main
restriction on the minimum Il. In this paper,
under the assumption that the FPGA chip has
enough area and there is no loop carry
dependency among loop iterations, the minimum
Il of apipelined loop is proven to be the number
of external memory accesses by the loop body
provided that there is only one memory port.
This result can be extended to multiple memory
case directly.

This paper makes two contributes. First, in
the design space exploration of pipelined loop
computations that involve the external memory
access in a multiple FPGA system, different
memory access patterns [5], which are the
number of memory readings and the number of
memory writings of each memory port, can be
enumerated to provide the design options
without worrying about the memory access
conflict. Second, the memory interface can be
automatically generated with the proposed
algorithms to control the external memory access
of the pipelined loop.

Section 2 presents the concepts of memory
access schedule, memory access control
schedule, and memory access scheduling.
Section 3 gives an algorithm to generate a
memory access control schedule, which can be
used to control the memory accesses for a
pipelined loop with the minimum II, from a
standard memory access schedule of the loop
body. Section 4 presents an algorithm to
standardize a memory access schedule. Section 5
concludes the paper.

2 Memory Access Scheduling

Figures 1 and 2 show typical memory access
timing diagrams adapted from STARFIRE ™
Reference Manual [4]. When an interna circuit
as shown in Figure 3 needs to read or write
certain data from or to the on-board memory,
designers need to assign a sequence of logic
values to the control signals Srobe n and
Write Sel n at proper clock cycles, and to
provide Addr with corresponding address values
at correct cycles, according to the timing
diagrams in Figures 1 or 2 and the specification
of the internal circuit about when and from
where the memory data is needed, or when and
to where the result is ready for memory write.

S ipipininipipiniy
Strobe_n

Write_Sel |

Addr | RARA2[RAT]

Data In | RD1|RD2[RD3

Figure 1: Typical Burst Read Cycle
from On-board Memory

M_Clk _ I__| |_| I_
Strobe n l l
Write_Sel_n |

Addr | wa1| waz | was|

Data_Out | wo1 [woz] wos]

Figure 2: Typical Burst Write Cycle
to On-board Memory

In genera, the specification of the internal
circuit about when and from where the memory
data are needed, or when and to where the result
is ready for memory write can be represented as
an array whose index stands for the clock cycle
and whose entry stands for the memory access
(read, write, read and write, or none) and the
memory location. For simplicity, the memory
location information will be not considered in
the following discussion without loss of
generality, and the following numbers are used
to identify the memory access activities; 1 for
Read, 2 for Write, 3 for Read and Write, and O
for None.

For example, the following array specifies
that memory data are needed for the first two
consecutive clock cycles, and in the last clock
cycle a result is ready to be written back to
memory.

Clock Cycle(Index) |0 |1 |2 |3 | 4
Memory Access 1112/]0|0 |2

Table 1: A Memory Access Schedule

The array is called a memory access
schedule. Note that the memory access schedule
is for a single memory port. When the internal
circuit uses multiple memory ports, there will be
multiple memory access schedules, each
corresponding to one memory port. A memory
access schedule is said to be standard, if all the
reads are consecutive and begin from the first
clock cycle, and al the writes are consecutive
and end at the last clock cycle. For example, the
above memory access schedule is standard.

External Memory

ﬁM em Data

Memory Interface

Strobe | Data In

rite Sel n Data Out

Internal Circuit

FPGA

Figure 3: Internal Circuit Accessing External
Memory via Memory Interface

The task of assigning a sequence of logic
values to the memory access control signals is
called the memory access control scheduling,
and for each memory access control signal, the
sequence of logic values can also be represented
as an array with index indicating the clock cycle
and is caled the memory access control
schedule

For a single port memory bank, a memory
access conflict occurs when more than one
datum is put on the memory data bus Mem_Data
as shown in Figure 3 in the same clock cycle.
Therefore, a memory access schedule that is free
of memory access conflicts cannot have more
than one reading or more than one writing at the
same clock cycle. However, a memory access
schedule that reads and writes at the same clock
cycle may not cause memory access conflicts
when reading and writing have different delays.

A memory access shedule has memory
access conflict if one of its memory access
control schedules has more than one different
logic value & one dock cycle. For example,
when reading delay is 4 clock cycles and writing
delay is O clock cycle, the following memory
access shedule has a memory access conflict
becaise it requires Write_Sal_n[0] to be bath O
and 1 That isimpossble.

Clock Cycle(Index) |0 |12 | 3|4

Memory Access 2100|012

By using the a&ove terminology, the memory
access timing diagrams are designed to guide
how to oltain a memory access control schedule
for ead control signals from a memory access
schedule. The guidance of memory accesstiming
diagrams, for example, those shown in Figures 1
and 2, can be abstraded as the following: (1) The
default value of Srobe n is 1 (high) and the
default value of Wkite Sel n is =1 (high
impedance). (2) If reading at clock cycle n then
Srobe n[n-4] = 0, and Write_Sel_n[n-4] = 1,
where the mnstant 4 is adually a reading delay
time (cycles). (3) If writing at clock cycle n then
Srobe n [n-0] = 0, and Write_ Sal_n [n-0] = 0,
where the @mnstant 0 in the index is the writing
delay time (cycles). The guidance rules can be
represented in terms of the memory access
schedule. For simplicity, the default logic values
of the @ntrol signals are not considered.

If data[n] =1 or 3 then
e Srobe n[n-dg]=0, and
Write Sal_n[n-dg] =1

If data[n] = 2 or 3 then
e Srobe n[n-dy] =0, and
e Write Sal n[n-dy] =0

where data is a memory access €hedule, di is
the reading delay cycles, and dy is the writing
delay cycles. It is assumed that O<d<dg without
lossof generality.

Let data be a memory access shedule,
Algorithm 1 computes the memory acass
control schedules for Write_ Sel_n and Srobe _n.
For example, asume dg=2 and d,=0 and let
data=(1, 2, 1, 2). Then the following result can
be obtained from Algorithm 1.

Index 2|10 (1]2 |3
Srobe n 0 |1 0O |01 |O
Write Sl n |0 |-1 |0 |1 |-1 |1
data 1]2 |1 |2

Algorithm 1: M emory Access Control
Scheduling
For ead index n of data do
Srobe n[nj< 1
Write Sel_n[n] € -1
For n < thefirst index to the last index do
If data[n] = 1 or 3 then
If Write_Sel_n[n- dg] = 0then
Return "memory access conflict";
Else{
Srobe n[n- dg] =0;
Write Sel_n[n-dg] =1, }
If data[n] = 2 or 3 then
If Write_Sel_n[n- dy] = 1 then
Return "memory access conflict";
Else{
Srobe n[n- dy] =0;
Write Sel_n[n-dy] =0;}

It can be noted that a memory access
schedule caises a memory accessconflict if and
only if it requires multiple logic values assgned
to the same oontrol signal at the same time (clock
cycle). The conflict may be avoided if memory
write operations are dlowed to be delayed. It is
feasible by adding delay components on the bus
Data Out in Figure 3. Delaying a memory write
operation by adding delay components is cdled
the memory write scheduling. On the other hand,
a memory read operation, by a similar argument,
can be scheduled to perform before the datum is
consumed by the internal circuit. In this case,
delay components need to be alded on the bus
Data In in Figue 3 so as to kee the right
timing. This is cdled the memory rea
scheduling. Both the memory real scheduling
and the memory write scheduling are cdled the
memory access gheduling.

3 Loop Pipelining with M odulo
Scheduling

In this sdion, it is asame that there is a
singe memory port conneding to an FPGA chip
and the FPGA chip has enough area Let Nrp and
Nwr be the number of reads and the number of
writes by the loop bod computation. It is
obvious that the minimum Il of the pipelined
loop cannot be lessthan Nrp+Nyyr.

Without considering the ecternal memory
access timing, the loop bod¢ can be scheduled
with its Il eqgual to Ngp+Nwgr. The resulting
modulo schedule of the loop bodg contains the
information about when the input data from

memory are consumed and when the results that
are needed to be stored in the memory are ready.
This information is, in fact, a memory access
schedule of the loop body. In general, this
memory access schedule may cause memory
access conflicts during the pipelined loop
computation.

In this section, it is proven that when the
memory access schedule of a loop body is
standard, memory access conflicts during the
pipelined loop computation with 11 equa to
NrotNwr Can be avoided by performing the
memory write scheduling to the memory access
schedule of the loop body. Note that using the
memory read scheduling is also possible. Also
note that the pipelined loop computation will
remain the same. In the next section, this result is
generalized to any memory access schedule of a
loop body by transforming the memory access
schedule to a standard one.

A standard memory access schedule can be
simply represented as a 3-tuple (Nrp, Nc, Nwr),
where Ngp is the number of reading cycles, N¢is
the number of other computation cycles, and
Nwr is the number of writing cycles. It is shown
asfollows.

NRD NC NWR

The top part of Figure 4 shows the execution
of four consecutive iterations where each
iteration is initiated with [1=Nrp+Nyg cycles
apart. In order to avoid memory access conflicts,
the memory write schedule may be delayed by D
clock cycles as shown in dashed boxes, while the
memory read schedule remains unchanged. The
bottom part of Figure 4 shows such a memory
control signal schedule, where the dashed arrows

show the memory access control schedule for the
read operations, and the spaces labeled Ny are
placeholders of the memory access control
schedule for the write operations.

Assume that the memory write control
schedule for the first iteration is scheduled after
mx(Ngrp+Nwr)+Ngrp clock cycles (m=1 in Figure
4). The memory write control schedule for the
remaining iterations can be easily settled. In
order to minimize the delaying cycles of memory
write operations, i.e., minimizes D, the number
m, which is called the prologue number, can be
computed with the following formula.

[N, -d,, +dg [

0 Neo t*Nur [0

The delay cycles of the write operation can be
computed by

D =mx(Ngy, + Nyg) —dg = N +d,

m=

Note that in order for the write operations to
keep the right timing after memory write
scheduling, D delay registers are needed to delay
the output results to the memory of the loop
body circuit

Theorem 1. Assume that a loop body has a
standard memory access schedule (Ngp, N,
Nwgr) and the number of the loop iterations is
Niter- Then the minimum 11 of the pipelined
loop is Nrp+Nwr and the number of iterations of
steady state of the pipelined loop is Njtgr — m.
The total number of cycles required to execute
the modulo scheduleis Il ynyX(Njtgr +m).

dr+Nro+Nc D .}
|
======5 |
Nrp Nc Nwr i Nwr 1
d 7 | ' T !
R // Nro Nc Nwr i Nwr |
/ 4 i : Uy !
/ /’ I Nrp Nc Nwr ! Nwr i
/ 7 E F====="5 1
// /// I / Nro Nc Nwr |1 Nwr |
/ / e ~ b------ !
// // {I/ ///
/ / ,'/| ///
» » L3 K .
Nro | Nwr Nro | Nwr Nrp INWR Nro | Nwr i
|
1
mX(Nrp+Nwr)+ Nrp dw

Figure4: Loop Pipelining with a M odulo Schedule (m=1)

Recdl that a memory access shedule (Ngp,
Nc, Nwr) has an array representation. For
example, data=(6,3,2) is equivalent to data=
(1,1,1,1,1,1,0,0,0,2,2), where Ngp=6, Nc=3 and
Nw=2. A right shift operation RSH(index,
distance, data) of a memory access shedule (an
array) is defined to shift the aray elements that
are in between index and the last index to the
right by distance and insert distance number of
0's in the undefined entries after shifting. For
example, RSH(9,1,data)=(1,1,1,1,1,1,0,0,0,0,2,2)
and RSH(0,8,data)=(0,0,0,0,0,0,0,0,1,1,1,1,1,1,
0,0,0,2,2). Addition of two arrays is defined to
add corresponding entries of the two arrays. If
two arraysto be alded are of different length, the
undefined entries of the shorter array at the end
are considered to be zeo.

Algorithm 2 generates the memory access
control schedules for the prologue, the stealy
state and the epilogue of the pipelined loop from
a standard memory access shedule of a loop
body, data.

Algorithm 2: Generate the memory access
control schedules of pipelined loop.

(1) Compute the minimum I1.

II' = Nrp+Nwr
(2) Compute the prologue number.
N; -d,, +dg O

0 Neo +*Nur [

(3) Compute the delay cycles of the write
operations.

D =mx(Ng + Nyg) —dz — N +d,

(4) Shift all writing operations in data to the
right by D, i.e.
data = RSH(Ngp+Nc,D,data)
(5) Shift and add schedules
data_s= data;
For i=1to mdo
data = data_s+ RSH(0, I, data);
(6) UsingAlgorithm 1 to perform Memory
AccessControl Scheduling for data
(7) Number of exeaution cycles of prologue:
11 xm.
Number of exeaution cycles of stealy state:
11 %(Nrer— M)
Number of exeaution cycles of epil ogue:
11 xm.
Example 1: Asaume data=(1,1,0,0,2), dg=2
and dy=0. Then
(1) 1=3. (2) m=2. (3) D=2.
(4) data= (1,1,0,0,0,0,2).
(5) data= (1,1,0,1,1,0,3,1,0,2,0,0,2)
(6) Write_Sel_n=(0,0,-1,0,0,-1,0,0,1,-1-1,1,-1,
-1, 1)

Srobe n=(0,0,1,0,0,1,0,0,0, 1,1,0,1,1,0)
(7) Prologue: length = mxIl=6
Write Sd n=(0,0,-1,0,0,-1)
Srobe n= (0,0, 1,0,0, 1)
Steady State: length=I1=3
Write Sel_ n=(0,0,1)
Srobe n=(0,0,0)
Epilogue: length= mxIl =6
Write Sl n=(-1-1,1,-1,-1,1)
Srobe n=(1,1,0,1, 1,0

Note that when an FPGA buffer is used to
store the incoming external memory data, the
loop bod gets data from the buffer. In this case,
the number of external memory accesss by the
pipelined computation is reduced, and then the
minimum 1l is reduced. In this case, the @ove
theorem still holds, but the &ove dgorithm
needs to be modified dightly. First, the reading
delay cycles dould be dr+1 becaise it needs one
clock cycle for data to enter the buffer. Seaond,
the loop bog computation begins only after the
FPGA buffer is fully filled with the required
external memory data. Therefore, the memory
readings in the aurrent iteration are used for the
next iteration, and the last iteration of the loop
does not neel to read external memory again.
(Please see[3] for detail s.)

4 Standardizing Memory
Access Schedule

This sdion presents a tedcnique ad
corresponding algorithms to transform a memory
access shedule into a standard one by using
memory write scheduling to delay the write
operations and using memory read scheduling to
advancethe real operations.

In case of memory write scheduling, a delay
component may be needed for the memory write
operations gedfied in the original memory
access shedule to keep the wrred timing A
circular queue and a multiplexer as down in
Figure 5 are used for this purpose.

Data Out
Result -

QW_En I Circular
QR _En Queue
;’

QM_Sel
Figure5: Circular Queue with Memory
Write Scheduling

The logic values for the signas QW _En
(queue write enable), QR_En (queue read enable)
and QM_Sd nead to be determined. Note that
either the multiplexer or the drcular queue may
not be necessry depending on a particular
memory access €hedule. Also, the length of the
circular queue should be & dort aspossble.

Now look at an example of memory write
schedule. As own below, the memory access
schedule mntains $x write operations. The data
that are supposed to write bad into the memory
areremrded instead of write operation 2.
0/1|2|3|4|5|6|7|8]9
3|4 8 |2 5 7
The @ove memory access shedule is to be
standardized as
0/1|2|3|4|5|6|7|8]|9
3/4|8|2]|5]|7
A circular queue of length two and a multi plexer
are neaded. The logic values for the signals
QW _En, QR En and QM_Sdl as well as the
contents in the drcular queue & ead clock cycle
are listed as below, where & clocks 2, 3, and 4,
the datum 3 is at the head of the queue, and at
clocks 5, 6, 7, and 8 thedata4, 8, 2, and 5are &

the head of the queue, respedively.
0/1]/2|3]/4|5]|6]7]8]9

QW En|O|1|1]|0|21]1|0|1|0]O

QREn |O]O|O|Oj2]|1|1|1|1]|O0

QM_Sd |0|0|0O|0O|]0O|O|O|O|O]|1
0/1/2|3]/4|5]|6]7|8]9

Queue 414|182

Hea 3/3[3|4|8]2]|5

Asaume that the memory access shedule is
represented as an array, data, and the schedule
length is N, the following agorithm cdculates
the schedules of the signals QW _En, QR En,
QM_Sdl and the minimum length Ly of the
circular queue. The dgorithm deds with two
cases, one requiring the multi plexer and the other
not. It scans the original schedule twice In the
first scan, the number of data neeaded to store in
the queue and the number of data not needed to
store in the queue ae cmputed, and recorded in
Lvin @nd Ny respedively. Also the logic values
of the signals QW _En, QM_Sdl at ead clock
cycle ae computed. In the second scan, the logic
values of the signd QR _En are computed, the
number of data neeled to store in the queue
during the queue reading period are subtraced
from Ly computed in the first scan. Therefore,
after the second scan, the minimum length of the
circular queue isthe value of L.

Algorithm 3: Compute QW_En, QR _En,
QM_Sdl, and Ly, for write operations:
(1) Case 1: data[N-1] =2 or 3

The drcular queue and the multiplexer are
needed only if there exist ny and n, such that 0 <
n; < n, < N-1 and data[n;] is2 or 3 and data[ny]
isneither 2 or 3.
(1.1) Compute QW _En and QM_Sel

Ne=0; flag=1; Lyyn=0;
For n €< N-1 downto 0 do
QW _En[n] =0;
QM_Sel[n] = 0;
If flag = 1 then
If data[n] =2 or 3 then
QM_Sel[n] = 1; Ni++;
Elseflag=0;
Else
If data[n] = 2 or 3 then
QW_En[n] = 1; Lynt++;

(1.2) Compute QR_En and Ly

num = Lyn;
For n € N-1 downto N-N, do
QR En[n] =0;
For n € N-N,-1 dowvnto N-N,-numdo
QR En[n] =1;
If data[n] =2 or 3then
Lvin =5
For n € N-N,-num-1 downto 0 do
QR En[n] =0;

(2) Case 2: data[N-1] isneither 2 nor 3

The multiplexer is not needed. The drcular
gueue is needed only if there exists n such that n
< N-1 and data[n] is either 2 or 3.
(2.1) Compute QW _En

Lwin=0;
For n € N-1 downto O do
QW _En[n] =0;

If data[n] = 2 or 3 then
QW_En[n] = 1; Lynt++;

(2.2) Compute QR_En and Ly

num = LMIN
For n € N -1 downto N-numdo
QR En[n] =1;
If data[n] = 2 or 3 then
Luvin ==
For n € N-num-1 downto 0 do
QR En[n] =0;

In case of memory read scheduling, a delay
component may also be needed for the read
operations edfied in the origina memory
access shedule to keep the mrred timing.
Similarly with the memory write scheduling, a.
circular queue and a multiplexer are needed.
(Please see[3] for detail s.)

5 Conclusions

When aloop bog computation uses multiple
memory ports, there ae multiple memory access
schedules of the loop bod, ead for one memory
port. In that case, the minimum initi ation interval
is the maximum number of memory accessin all
schedules. Therefore, the results in this paper can
be extended to the cae of multiple memory ports
diredly by applying the memory acces
scheduling to ead individual memory schedule.

From the results presented in this paper, it
can be seen that the minimum 1l of a pipelined
loop can be determined by the external memory
acceses, and the memory access €heduling and
the memory access control scheduling can be
caried out separately from the loop computation
synthesis. This technique enables a pipelined
design of loop computations to achieve the
maximum throughput and makes the loop
pipelining synthesis independent with the
underlying memory accesstiming and freeof the
memory access conflict consideration. Thus it
reduces the mplexity of the rresponding
synthesis (modulo scheduling) algorithm. This
technique dso enables the aitomatic memory
controller generation for a pipelined loop
computation.

The presented memory access sheduling
algorithms have been applied to an automated
FPGA design tod at Wright State University
[3,5,6]. The tod maps generalized template
matching operations onto a reonfigurable
computer, a host computer with an FPGA board,
and produces an optimal FPGA design running
the FPGA board. The arrent design tod can
produce VHDL codes for the optimal mapping
results targeting the Wil dForce FPGA board.

6 References

[1] A. E. Charlesworth, "An approach to
scientific aray processing: The achitedural
design of the AP-120B/FPS-164 family", in
Computer, 14(9):18-27, September 1981

[2] M. Lam, "Software Pipelining An
effedive scheduling technique for VLIW
madiines," in Procealing of the ACM
SIGPLAN' 88 Conference on Programming
Language Design and Implementation, pp. 318
328 June 1988

[3] X. Liang “Mapping of Generdlized
Template Mapping on Reonfigurable
Computers’, Ph.D disertation, Wright State
University, Decenber 2001

[4] “"StarFire ™ Reference Manual",
Annapalis Systems, Inc.

[5] X. Liang and J. Jean, “Memory Access
Pattern Enumeration in GTM Mapping on
Remnfigurable Computers’, Procealings of
International Conference on Paralel and
Distributed Processng Techniques and
Applications, pp. 8-14, June 2001

[6] X. Liang, J. Jean and K. Tomko, “Data
Buffering and Allocaion in Mapping
Generalized Template Matching on
Remnfigurable Systems’, The Journal of
Supercomputing, Spedal Issue on Engineaing
of Reoonfigurable Hardware/Software Objeds,
19(1):77-91, 2001

