
 

Memory Access Scheduling and Loop Pipelining 
 

Xuejun Liang* and Jack Jean** 
*Department of Computer Science, Jackson State University 

xuejun.liang@ccaix.jsums.edu 
**Department of Computer Science and Engineering, Wright State University  

 jjean@cs.wright.edu 

 

Abstract: A memory access scheduling technique 
is presented to avoid memory access conflicts in 
a loop pipelining computation on reconfigurable 
computers. The technique ensures that there is a 
modulo schedule of a pipelined loop that can 
achieve the minimum initiation interval of the 
pipelined loop provided that there is no loop 
carry dependency. Algorithms are presented to 
produce such a schedule to control the access of 
external memories. These algorithms have been 
applied to an automated FPGA design tool at 
Wright State University. 
 
Keywords: Memory Access, Loop Pipelining, 
Design Automation, Reconfigurable Computing, 
and FPGA  
 

1 Introduction 
Loop pipelining is a common technique used 

for the speedup of the loop computations in 
reconfigurable systems. Modulo scheduling [1,2] 
is a particular loop pipelining technique, with 
which each iteration uses the same schedule and 
consecutive iterations are initiated at a constant 
rate, i.e. one initiation interval (II) apart. When 
the II is smaller than the latency of the loop body 
schedule, there exists some degree of 
overlapping between consecutive iterations. The 
smaller the II is, the higher the throughput of the 
pipelined loop is. However, the minimum II is 
usually restricted by the available hardware 
components and the dependency among loop 
iterations. In reconfigurable systems based on 
FPGA chips, the concurrency of hardware 
components can be very flexible. Special 
hardware components can be created according 
to the need of a particular schedule. Therefore, 

whenever there is enough area in the FPGA chip, 
the hardware components may not be the 
constraint of the minimum II. But, when the loop 
body involves the external memory accesses, 
because of the limited memory ports, the number 
of external memory accesses becomes the main 
restriction on the minimum II. In this paper, 
under the assumption that the FPGA chip has 
enough area and there is no loop carry 
dependency among loop iterations, the minimum 
II of a pipelined loop is proven to be the number 
of external memory accesses by the loop body 
provided that there is only one memory port. 
This result can be extended to multiple memory 
case directly. 

This paper makes two contributes. First, in 
the design space exploration of pipelined loop 
computations that involve the external memory 
access in a multiple FPGA system, different 
memory access patterns [5], which are the 
number of memory readings and the number of 
memory writings of each memory port, can be 
enumerated to provide the design options 
without worrying about the memory access 
conflict. Second, the memory interface can be 
automatically generated with the proposed 
algorithms to control the external memory access 
of the pipelined loop.  

Section 2 presents the concepts of memory 
access schedule, memory access control 
schedule, and memory access scheduling. 
Section 3 gives an algorithm to generate a 
memory access control schedule, which can be 
used to control the memory accesses for a 
pipelined loop with the minimum II, from a 
standard memory access schedule of the loop 
body. Section 4 presents an algorithm to 
standardize a memory access schedule. Section 5 
concludes the paper. 



2 Memory Access Scheduling 
Figures 1 and 2 show typical memory access 

timing diagrams adapted from STARFIRE TM 
Reference Manual [4]. When an internal circuit 
as shown in Figure 3 needs to read or write 
certain data from or to the on-board memory, 
designers need to assign a sequence of logic 
values to the control signals Strobe_n and 
Write_Sel_n at proper clock cycles, and to 
provide Addr with corresponding address values 
at correct cycles, according to the timing 
diagrams in Figures 1 or 2 and the specification 
of the internal circuit about when and from 
where the memory data is needed, or when and 
to where the result is ready for memory write. 

 

Figure 1: Typical Burst Read Cycle 
from On-board Memory 

 

Figure 2: Typical Burst Write Cycle 
to On-board Memory 

 
In general, the specification of the internal 

circuit about when and from where the memory 
data are needed, or when and to where the result 
is ready for memory write can be represented as 
an array whose index stands for the clock cycle 
and whose entry stands for the memory access 
(read, write, read and write, or none) and the 
memory location. For simplicity, the memory 
location information will be not considered in 
the following discussion without loss of 
generality, and the following numbers are used 
to identify the memory access activities; 1 for 
Read, 2 for Write, 3 for Read and Write, and 0 
for None. 

For example, the following array specifies 
that memory data are needed for the first two 
consecutive clock cycles, and in the last clock 
cycle a result is ready to be written back to 
memory.  

Clock Cycle (Index) 0 1 2 3 4 
Memory Access 1 1 0 0 2 

Table 1: A Memory Access Schedule 
 
The array is called a memory access 

schedule. Note that the memory access schedule 
is for a single memory port. When the internal 
circuit uses multiple memory ports, there will be 
multiple memory access schedules, each 
corresponding to one memory port.  A memory 
access schedule is said to be standard, if all the 
reads are consecutive and begin from the first 
clock cycle, and all the writes are consecutive 
and end at the last clock cycle. For example, the 
above memory access schedule is standard.  

Figure 3: Internal Circuit Accessing External 
Memory via Memory Interface 

 
The task of assigning a sequence of logic 

values to the memory access control signals is 
called the memory access control scheduling, 
and for each memory access control signal, the 
sequence of logic values can also be represented 
as an array with index indicating the clock cycle 
and is called the memory access control 
schedule  

For a single port memory bank, a memory 
access conflict occurs when more than one 
datum is put on the memory data bus Mem_Data 
as shown in Figure 3 in the same clock cycle. 
Therefore, a memory access schedule that is free 
of memory access conflicts cannot have more 
than one reading or more than one writing at the 
same clock cycle. However, a memory access 
schedule that reads and writes at the same clock 
cycle may not cause memory access conflicts 
when reading and writing have different delays. 

Strobe_n 

Write_Sel_n 

Addr 

Data_Out 

M_Clk 

   WA1     WA2     WA3 

   WD1     WD2     WD3 

Strobe_n 
  

Write_Sel
_n   

Addr 

Data_In   

M_Clk 

  RA1  RA2   RA3 

 RD1  RD2   RD3 

External Memory 

Internal Circuit 

Memory Interface 

Mem_Data 

Data_Out 

Data_In Strobe_n 
Write_Sel_n 

FPGA 



A memory access schedule has memory 
access conflict if one of its memory access 
control schedules has more than one different 
logic value at one clock cycle. For example, 
when reading delay is 4 clock cycles and writing 
delay is 0 clock cycle, the following memory 
access schedule has a memory access conflict 
because it requires Write_Sel_n[0] to be both 0 
and 1. That is impossible. 

Clock Cycle (Index)  0 1 2 3 4 

Memory Access 2 0 0 0 1 

 
By using the above terminology, the memory 

access timing diagrams are designed to guide 
how to obtain a memory access control schedule 
for each control signals from a memory access 
schedule. The guidance of memory access timing 
diagrams, for example, those shown in Figures 1 
and 2, can be abstracted as the following: (1) The 
default value of Strobe_n is 1 (high) and the 
default value of Write_Sel_n is –1 (high 
impedance). (2) If reading at clock cycle n then 
Strobe_n[n-4] = 0, and Write_Sel_n[n-4] = 1, 
where the constant 4 is actually a reading delay 
time (cycles).  (3) If writing at clock cycle n then 
Strobe_n [n-0] = 0, and Write_Sel_n [n-0] = 0, 
where the constant 0 in the index is the writing 
delay time (cycles). The guidance rules can be 
represented in terms of the memory access 
schedule. For simplicity, the default logic values 
of the control signals are not considered.  
 
 
 
 
 
 
 
 
where data is a memory access schedule, dR is 
the reading delay cycles, and dW is the writing 
delay cycles. It is assumed that 0≤dW≤dR without 
loss of generality. 

Let data be a memory access schedule, 
Algorithm 1 computes the memory access 
control schedules for Write_Sel_n and Strobe_n. 
For example, assume dR=2 and dW=0 and let 
data=(1, 2, 1, 2). Then the following result can 
be obtained from Algorithm 1. 

Index -2 -1 0 1 2 3 

Strobe_n 0 1 0 0 1 0 
Write_Sel_n 0 -1 0 1 -1 1 
data   1 2 1 2 

 
It can be noted that a memory access 

schedule causes a memory access conflict if and 
only if it requires multiple logic values assigned 
to the same control signal at the same time (clock 
cycle). The conflict may be avoided if memory 
write operations are allowed to be delayed. It is 
feasible by adding delay components on the bus 
Data_Out in Figure 3. Delaying a memory write 
operation by adding delay components is called 
the memory write scheduling. On the other hand, 
a memory read operation, by a similar argument, 
can be scheduled to perform before the datum is 
consumed by the internal circuit. In this case, 
delay components need to be added on the bus 
Data_In in Figure 3 so as to keep the right 
timing. This is called the memory read 
scheduling. Both the memory read scheduling 
and the memory write scheduling are called the 
memory access scheduling.  
 

3 Loop Pipelining with Modulo 
Scheduling 

In this section, it is assume that there is a 
single memory port connecting to an FPGA chip 
and the FPGA chip has enough area. Let NRD and 
NWR be the number of reads and the number of 
writes by the loop body computation. It is 
obvious that the minimum II of the pipelined 
loop cannot be less than NRD+NWR.  

Without considering the external memory 
access timing, the loop body can be scheduled 
with its II equal to NRD+NWR. The resulting 
modulo schedule of the loop body contains the 
information about when the input data from 

If data[n] = 1 or 3 then  
• Strobe_n[n-dR]=0, and  
• Write_Sel_n[n-dR] =1 

Algorithm 1: Memory Access Control  
Scheduling  
For each index n of data do 
    Strobe_n[n]

�
 1  

    Write_Sel_n[n] 
�

 -1   
For n 

�
 the first index to the last index do 

    If data[n] = 1 or 3 then 
        If Write_Sel_n[n- dR] = 0 then 

      Return "memory access conflict"; 
        Else { 
            Strobe_n[n- dR] = 0;  
            Write_Sel_n[n- dR] = 1; } 
    If data[n] = 2 or 3 then 
        If Write_Sel_n[n- dW] = 1 then  
            Return "memory access conflict"; 
        Else { 
            Strobe_n[n- dW] = 0;  
            Write_Sel_n[n- dW] = 0; } 

If data[n] = 2 or 3 then  
• Strobe_n [n-dW] = 0, and  
• Write_Sel_n [n-dW] = 0 



memory are consumed and when the results that 
are needed to be stored in the memory are ready. 
This information is, in fact, a memory access 
schedule of the loop body. In general, this 
memory access schedule may cause memory 
access conflicts during the pipelined loop 
computation.  

In this section, it is proven that when the 
memory access schedule of a loop body is 
standard, memory access conflicts during the 
pipelined loop computation with II equal to 
NRD+NWR can be avoided by performing the 
memory write scheduling to the memory access 
schedule of the loop body. Note that using the 
memory read scheduling is also possible. Also 
note that the pipelined loop computation will 
remain the same. In the next section, this result is 
generalized to any memory access schedule of a 
loop body by transforming the memory access 
schedule to a standard one. 

A standard memory access schedule can be 
simply represented as a 3-tuple (NRD, NC, NWR), 
where NRD is the number of reading cycles, NC is 
the number of other computation cycles, and 
NWR is the number of writing cycles. It is shown 
as follows. 
 
 

The top part of Figure 4 shows the execution 
of four consecutive iterations where each 
iteration is initiated with II=NRD+NWR cycles 
apart. In order to avoid memory access conflicts, 
the memory write schedule may be delayed by D 
clock cycles as shown in dashed boxes, while the 
memory read schedule remains unchanged. The 
bottom part of Figure 4 shows such a memory 
control signal schedule, where the dashed arrows 

show the memory access control schedule for the 
read operations, and the spaces labeled NWR are 
placeholders of the memory access control 
schedule for the write operations. 

Assume that the memory write control 
schedule for the first iteration is scheduled after 
m×(NRD+NWR)+NRD clock cycles (m=1 in Figure 
4). The memory write control schedule for the 
remaining iterations can be easily settled. In 
order to minimize the delaying cycles of memory 
write operations, i.e., minimizes D, the number 
m, which is called the prologue number, can be 
computed with the following formula.  
 
 
 
The delay cycles of the write operation can be 
computed by  

 
 
Note that in order for the write operations to 

keep the right timing after memory write 
scheduling, D delay registers are needed to delay 
the output results to the memory of the loop 
body circuit 
 

Theorem 1: Assume that a loop body has a 
standard memory access schedule (NRD, NC, 
NWR) and the number of the loop iterations is 
NITER. Then the minimum II of the pipelined 
loop is NRD+NWR and the number of iterations of 
steady state of the pipelined loop is NITER – m. 
The total number of cycles required to execute 
the modulo schedule is II MIN××(NITER +m). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Loop Pipelining with a Modulo Schedule (m=1) 

 

WCRWRRD dNdNNmD +−−+×= )(

NRD NC NWR 









+

+−=
WRRD

RWC

NN

ddN
m

NRD NC NWR 

NRD NC NWR 

NRD NC NWR 

NRD NC NWR 

NRD NRD NRD NRD NWR NWR NWR 

dR 
NWR 

NWR 

NWR 

D dR+NRD+NC 

m×(NRD+NWR)+ NRD dW 

NWR 

NWR 



Recall that a memory access schedule (NRD, 
NC, NWR) has an array representation. For 
example, data=(6,3,2) is equivalent to data= 
(1,1,1,1,1,1,0,0,0,2,2), where NRD=6, NC=3 and 
NW=2. A right shift operation RSH(index, 
distance, data) of a memory access schedule (an 
array) is defined to shift the array elements that 
are in between index and the last index to the 
right by distance and insert distance number of 
0’s in the undefined entries after shifting. For 
example, RSH(9,1,data)=(1,1,1,1,1,1,0,0,0,0,2,2) 
and RSH(0,8,data)=(0,0,0,0,0,0,0,0,1,1,1,1,1,1, 
0,0,0,2,2). Addition of two arrays is defined to 
add corresponding entries of the two arrays. If 
two arrays to be added are of different length, the 
undefined entries of the shorter array at the end 
are considered to be zero. 

Algorithm 2 generates the memory access 
control schedules for the prologue, the steady 
state and the epilogue of the pipelined loop from 
a standard memory access schedule of a loop 
body, data. 

Algorithm 2: Generate the memory access 
control schedules of pipelined loop.  
(1) Compute the minimum II . 
               II = NRD+NWR 
(2) Compute the prologue number. 
 

 
 

(3) Compute the delay cycles of the write 
operations. 

 
 

(4) Shift all writing operations in data to the 
right by D, i.e. 
       data = RSH(NRD+NC,D,data) 

(5) Shift and add schedules 
              data_s = data; 
              For i=1 to m do 

             data = data_s + RSH(0, II , data); 
(6) Using Algorithm 1 to perform Memory 

Access Control Scheduling for data 
(7) Number of execution cycles of prologue: 

 II×m. 
Number of execution cycles of steady state: 

 II×(NITER – m) 
Number of execution cycles of epilogue: 

 II×m. 
Example 1: Assume data=(1,1,0,0,2), dR=2 

and dW=0.  Then 
(1) II=3. (2) m=2. (3) D=2.  
(4) data =  (1,1,0,0,0,0,2). 
(5) data =  (1,1,0,1,1,0,3,1,0,2,0,0,2) 
(6) Write_Sel_n = (0,0,-1,0,0,-1,0,0,1,-1-1,1,-1,   
-1, 1) 

      Strobe_n = (0,0,1,0,0,1,0,0,0, 1,1,0,1,1,0) 
(7) Prologue:  length = m×II=6 
      Write_Sel_n = (0,0,-1,0,0,-1)   
           Strobe_n =  (0,0, 1,0,0, 1) 
     Steady State: length=II=3 
      Write_Sel_n = (0,0,1) 
           Strobe_n = (0,0,0) 
     Epilogue: length= m×II =6 
      Write_Sel_n = (-1-1,1,-1,-1,1) 
           Strobe_n = ( 1, 1,0, 1,  1,0) 

 
Note that when an FPGA buffer is used to 

store the incoming external memory data, the 
loop body gets data from the buffer. In this case, 
the number of external memory accesses by the 
pipelined computation is reduced, and then the 
minimum II is reduced. In this case, the above 
theorem still holds, but the above algorithm 
needs to be modified slightly. First, the reading 
delay cycles should be dR+1 because it needs one 
clock cycle for data to enter the buffer. Second, 
the loop body computation begins only after the 
FPGA buffer is fully fill ed with the required 
external memory data. Therefore, the memory 
readings in the current iteration are used for the 
next iteration, and the last iteration of the loop 
does not need to read external memory again. 
(Please see [3] for details.)  

 

4 Standardizing Memory 
Access Schedule 

This section presents a technique and 
corresponding algorithms to transform a memory 
access schedule into a standard one by using 
memory write scheduling to delay the write 
operations and using memory read scheduling to 
advance the read operations.  

In case of memory write scheduling, a delay 
component may be needed for the memory write 
operations specified in the original memory 
access schedule to keep the correct timing. A 
circular queue and a multiplexer as shown in 
Figure 5 are used for this purpose. 

 
 
 
 
 
 
 
 

Figure 5: Circular Queue with Memory 
Write Scheduling 









+

+−=
WRRD

RWC

NN

ddN
m

WCRWRRD dNdNNmD +−−+×= )(

QW_En 

QR_En 

QM_Sel 

 1 
 
 0 

 
Circular 
Queue 

Result 
Data_Out 



The logic values for the signals QW_En 
(queue write enable), QR_En (queue read enable) 
and QM_Sel need to be determined. Note that 
either the multiplexer or the circular queue may 
not be necessary depending on a particular 
memory access schedule. Also, the length of the 
circular queue should be as short as possible.  

Now look at an example of memory write 
schedule. As shown below, the memory access 
schedule contains six write operations. The data 
that are supposed to write back into the memory 
are recorded instead of write operation 2. 

0 1 2 3 4 5 6 7 8 9 
 3 4  8 2  5  7 

The above memory access schedule is to be 
standardized as 

0 1 2 3 4 5 6 7 8 9 
    3 4 8 2 5 7 

A circular queue of length two and a multiplexer 
are needed. The logic values for the signals 
QW_En, QR_En and QM_Sel as well as the 
contents in the circular queue at each clock cycle 
are listed as below, where at clocks 2, 3, and 4, 
the datum 3 is at the head of the queue, and at 
clocks 5, 6, 7, and 8, the data 4, 8, 2, and 5 are at 
the head of the queue, respectively. 
 0 1 2 3 4 5 6 7 8 9 
QW_En 0 1 1 0 1 1 0 1 0 0 
QR_En 0 0 0 0 1 1 1 1 1 0 
QM_Sel 0 0 0 0 0 0 0 0 0 1 

 
 0 1 2 3 4 5 6 7 8 9 
Queue    4 4 8 2    
Head   3 3 3 4 8 2 5  

 
Assume that the memory access schedule is 

represented as an array, data, and the schedule 
length is N, the following algorithm calculates 
the schedules of the signals QW_En, QR_En, 
QM_Sel and the minimum length LMIN of the 
circular queue. The algorithm deals with two 
cases, one requiring the multiplexer and the other 
not. It scans the original schedule twice. In the 
first scan, the number of data needed to store in 
the queue and the number of data not needed to 
store in the queue are computed, and recorded in 
LMIN and Nk respectively. Also the logic values 
of the signals QW_En, QM_Sel at each clock 
cycle are computed. In the second scan, the logic 
values of the signal QR_En are computed, the 
number of data needed to store in the queue 
during the queue reading period are subtracted 
from LMIN computed in the first scan. Therefore, 
after the second scan, the minimum length of the 
circular queue is the value of LMIN.    

Algorithm 3: Compute QW_En, QR_En, 
QM_Sel, and LMIN for write operations:  
(1) Case 1:  data[N-1] = 2 or 3  

The circular queue and the multiplexer are 
needed only if there exist n1 and n2 such that 0 ≤ 
n1 < n2 < N-1 and data[n1] is 2 or 3 and data[n2] 
is neither 2 or 3. 
(1.1) Compute QW_En and QM_Sel 

 
 
 
 
 
 
 
 
 
 
 
 
 

 (1.2) Compute QR_En and LMIN 

 
 
 
 
 
 
 
 
 
 
 

(2) Case 2:  data[N-1] is neither 2 nor 3 
The multiplexer is not needed. The circular 

queue is needed only if there exists n such that n 
< N-1 and data[n] is either 2 or 3. 
(2.1) Compute QW_En 

 
 
 
 
 
 
 

(2.2) Compute QR_En and LMIN 

 
 
 
 
 
 
 
 
 
 

Nk = 0; flag = 1; LMIN = 0; 
For n �  N-1 downto 0 do 
    QW_En[n] = 0;   
    QM_Sel[n] = 0; 
    If flag = 1 then         
        If data[n] = 2 or 3 then  
            QM_Sel[n] = 1; Nk++; 
        Else flag = 0;   
    Else 
        If data[n] = 2 or 3 then 
            QW_En[n] = 1; LMIN++;  

num  =  LMIN;  
For n �  N-1 downto N-Nk do 
    QR_En[n] = 0;   
For n �  N-Nk-1 downto N-Nk-num do 
    QR_En[n] = 1;   
    If data[n] = 2 or 3 then   
        LMIN --;  
For n �  N-Nk-num-1 downto 0 do 
    QR_En[n] = 0;   

LMIN = 0; 
For n �  N-1 downto 0 do 
    QW_En[n] = 0;   
    If data[n] = 2 or 3 then  
        QW_En[n] = 1; LMIN++; 

num  =  LMIN  
For n �  N –1 downto N-num do 
    QR_En[n] = 1;   
    If data[n] = 2 or 3 then   
        LMIN --; 
For n �  N-num-1 downto 0 do 
    QR_En[n] = 0;   



In case of memory read scheduling, a delay 
component may also be needed for the read 
operations specified in the original memory 
access schedule to keep the correct timing. 
Similarly with the memory write scheduling, a. 
circular queue and a multiplexer are needed. 
(Please see [3] for details.) 

 

5 Conclusions 
When a loop body computation uses multiple 

memory ports, there are multiple memory access 
schedules of the loop body, each for one memory 
port. In that case, the minimum initiation interval 
is the maximum number of memory access in all 
schedules. Therefore, the results in this paper can 
be extended to the case of multiple memory ports 
directly by applying the memory access 
scheduling to each individual memory schedule. 

From the results presented in this paper, it 
can be seen that the minimum II of a pipelined 
loop can be determined by the external memory 
accesses, and the memory access scheduling and 
the memory access control scheduling can be 
carried out separately from the loop computation 
synthesis. This technique enables a pipelined 
design of loop computations to achieve the 
maximum throughput and makes the loop 
pipelining synthesis independent with the 
underlying memory access timing and free of the 
memory access conflict consideration. Thus it 
reduces the complexity of the corresponding 
synthesis (modulo scheduling) algorithm. This 
technique also enables the automatic memory 
controller generation for a pipelined loop 
computation.  

The presented memory access scheduling 
algorithms have been applied to an automated 
FPGA design tool at Wright State University 
[3,5,6]. The tool maps generalized template 
matching operations onto a reconfigurable 
computer, a host computer with an FPGA board, 
and produces an optimal FPGA design running 
the FPGA board. The current design tool can 
produce VHDL codes for the optimal mapping 
results targeting the WildForce FPGA board. 
 

6 References 
[1] A. E. Charlesworth, "An approach to 

scientific array processing: The architectural 
design of the AP-120B/FPS-164 family", in 
Computer, 14(9):18-27, September 1981 

[2] M. Lam, "Software Pipelining: An 
effective scheduling technique for VLIW 
machines," in Proceeding of the ACM 
SIGPLAN' 88 Conference on Programming 
Language Design and Implementation, pp. 318-
328, June 1988 

[3] X. Liang “Mapping of Generalized 
Template Mapping on Reconfigurable 
Computers” , Ph.D dissertation, Wright State 
University, December 2001  

[4] "StarFire TM Reference Manual", 
Annapolis Systems, Inc. 

[5] X. Liang and J. Jean, “Memory Access 
Pattern Enumeration in GTM Mapping on 
Reconfigurable Computers” , Proceedings of 
International Conference on Parallel and 
Distributed Processing Techniques and 
Applications, pp. 8-14, June 2001 

[6] X. Liang, J. Jean and K. Tomko, “Data 
Buffering and Allocation in Mapping 
Generalized Template Matching on 
Reconfigurable Systems” , The Journal of 
Supercomputing, Special Issue on Engineering 
of Reconfigurable Hardware/Software Objects, 
19(1):77-91, 2001 

 
 


