
1

Memory Access Scheduling and 
Loop Pipelining

Xuejun Liang* and Jack Jean**
*Jackson State University, Jackson, MS

** Wright State University, Dayton, OH

Outline

• Introduction to the Problem
• Results
• Algorithms

• Memory Access Control Scheduling
• Loop Pipelining with Modulo Scheduling 
• Standardizing Memory Access Schedule

• Conclusions



2

Introduction

External Memory

Internal Circuit

Memory Interface

Mem_Data

Data_Out

Data_InStrobe_n
Write_Sel_n

FPGA

• Computation Model with FPGA • Memory Access Schedule

Activity

Clk 654321

WCCRRR

Addr

Write_Sel_n

Strobe_n

654321Clk

• Control Signal Schedule

• Memory Access Conflict

Introduction (Cont.)

Sample Timing Diagrams

Memory Access Schedule

 

S t r o be_ n  

W r i t e_ S el _ n  

A d d r _ O u t  

D a ta _ O u t  

M _ C l k  

   W A 1       W A 2       W A 3  

   W D 1       W D 2       W D 3  

+

• Memory Access Control Scheduling

Control Signal Schedule

Addr

Write_Sel_n

Strobe_n

654321Clk

Activity

Clk 654321

WCCRRR



3

Introduction (Cont.)

WCRWCCR

Memory Access Schedule

Control Signal Schedule
• Prologue 
• Steady State
• Epilogue

Loop Body

Sample Timing Diagrams

• Memory Access Control Scheduling with Loop Pipelining
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• Loop Pipelining with Modulo Schedule

• Initiation Interval (II)
• Minimum II

1. What is the minimum II?
2. How to produce the control signal

schedule automatically? 

Results

1. It is proved that the minimum II is 
the number of memory accesses by the loop body

2. The minimum II can be achieved by
Memory access scheduling
– Rearrange the ordering of memory accesses 

3. Memory access scheduling is performed after 
the circuit synthesis for the loop computation.
• Reduce the complexity of the circuit synthesis
• Support the design portabil ity

4. Algorithms are provided to produce 
the memory access control schedule automatically.
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Memory Access Timing Rules

Rule 1:  Default 
Strobe_n is 1 (high) 
Write_Sel_n is -1 (high impedance)   

Rule 2: Reading 
If Data(n) = 1 or 3 then 

Strobe_n[n-dR]=0, and 
Write_Sel_n[n-dR] =1

Rule 3: Writing 
If Data[n] = 2 or 3 then 

Strobe_n [n-dW] = 0, and
Write_Sel_n [n-dW] = 0 

Where dR and dW are delay cycles of 
reading and writing respectively. 

Sample Timing Diagrams
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Memory Access Control Scheduling
For each index n of data do

Strobe_n[n]Å 1 (default logic value, high)
Write_Sel_n[n] Å -1 (default logic value, high impedance )  

For nÅ first index of data to the last index of data do
If data[n] = 1 or 3 then  //reading

If Write_Sel_n[n- dR] = 0 then Return "memory access conflict";
Else Strobe_n[n- dR] = 0; Write_Sel_n[n- dR] = 1

If data[n] = 2 or 3 then  //writing
If Write_Sel_n[n- dW] = 1 then Return "memory access conflict";
Else Strobe_n[n- dW] = 0; Write_Sel_n[n- dW] = 0

Example: 
dR=2, dW=0 and 
data=(1, 2, 1, 2)

Index              -2  -1  0  1  2  3
Strobe_n 0    1  0  0  1  0
Write_En_n 0 -1  0  1  0  1
data 1 2  1  2
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Loop Pipelining with Modulo Schedule
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The delay cycles of 
the write operation 

Algorithm

(1)   II=NR+NW
(2) Compute the prologue number m.
(3) Compute the delay cycles of the write operations D.
(4) Shift all writing operations in data to the right by D, i.e.

data = RSH(NRD+NC,D,data)
(5) Shift and add schedules

data_s = data;
For i=1 to m do

data = data_s + RSH(0, II , data);
(6) Perform Memory Access Control Scheduling for data
(7) Number of execution cycles of prologue: II×m.

Number of execution cycles of steady state: II×(NITER – m)
Number of execution cycles of epilogue: II×m

data=(6,3,2)
data=(1,1,1,1,1,1,0,0,0,2,2)
NRD=6, NC=3 and NW=2.

Representation

Shift Operation

RSH(9,1,data) = 

(1,1,1,1,1,1,0,0,0,0,2,2)

RSH(index, distance, data)

Generate the memory access control
schedule of pipelined loop
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Standardizing Memory Access Schedule

WCRWCCR WWCRR

• What are the shortest length of the circular queue?

• May need to add a Circular Queue and a Multiplexer 

QW_En

QR_En

QM_Sel

1

0Circular
Queue

Result
Data_Out 0  1  2  3  4  5  6  7  8  9

3  4 8  2      5 7

0  1  2  3  4  5  6  7  8  9
3  4  8  2  57

Algorithm Compute QW_En, QR_En, QM_Sel, and
the length of the circular queue

Nk = 0; flag = 1; LMIN = 0;
For nÅ N-1 downto 0 do

QW_En[n] = 0;  
QM_Sel[n] = 0;
If flag = 1 then    

If data[n] = 2 or 3 then 
QM_Sel[n] = 1; Nk++;

Else flag = 0;  
Else

If data[n] = 2 or 3 then
QW_En[n] = 1; LMIN++;

num =  LMIN; 
For nÅ N-1 downto N-Nk do

QR_En[n] = 0;  
For nÅ N-Nk-1 downto N-Nk-num do

QR_En[n] = 1;  
If data[n] = 2 or 3 then  

LMIN --; 
For nÅ N-Nk-num-1 downto 0 do

QR_En[n] = 0;  

Two scans of the original schedule.

The first scan The second scan

LMIN: # of data in the queue

Nk: # of data not in the queue

LMIN: The minimum length of queue
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Conclusions

• The results can be extended to the case of multiple memory ports

• The technique simpli fies the loop computation synthesis 

• The technique enables to seek an “optimal” FPGA design for 
a nested loop computation. 

•The algorithms enable to generate a memory controller for
a pipelined loop computation automatically. It has been applied
to an automated FPGA design tool at Wright State University


