
Interface Design for the Mapping of Generalized

Template Matching on Recon�gurable Systems

Xuejun Liang, Jack Jean

Department of Computer Science and Engineering

Wright State University

Dayton, OH 45435, USA

Abstract

Algorithms considered as generalized template
matching (GTM) operations [1] can be acceler-
ated by using recon�gurable systems with �eld pro-
grammable gate array (FPGA) hardware resources.
This paper proposes a method of designing the in-
terface among FPGA, host processor, and on-board
memory for GTM operations. The goal is to sup-
port the automation of the interface design and to
improve the portability of GTM design among dif-
ferent FPGA boards.

Keywords: Template Matching, Con�gurable

Computing, Field Programmable Gate Array, Re-

con�guration

1 Introduction

Image processing algorithms for 2D digital �l-
tering, morphologic operations, motion estima-
tion, and template matching share some com-
mon properties. They all involve massively
parallel computations that can bene�t from us-
ing massive FPGA hardware resources. In ad-
dition, each algorithm can be considered a spe-
cial case of a generalized template matching
(GTM) operation. As a result, designing opti-
mal implementations for these operations can
be characterized similarly and be solved sys-
tematically. In our previous work [1], we de-
scribed the GTM operation and characterized
the mapping of the GTM operation in terms
of data allocation and bu�ering. We presented
several mechanisms (fully bu�ering image data
on FPGA chip, using small internal bu�er on
the FPGA, duplicating image data on the ex-

ternal memory, etc.) to support di�erent lev-
els of parallelism (function level, pixel level and
template level). This paper proposes a method
of designing the FPGA interface for GTM op-
erations. The interface design is to put to-
gether interface components, such as host in-
terface, memory interface, multiplexers, and
controllers in VHDL according to interfacing
speci�cations. In addition, the estimate on the
area/time should be produced. Because di�er-
ent FPGA boards have di�erent architectures
and require di�erent interfaces, automating the
interface design will greatly speed up the GTM
FPGA design and improve the design porta-
bility. The concept of such an interface design
tool is illustrated in Figure 1.

Interface
Design Tool

Interface
Specification

VHDL
Code

Area/Time
Estimate

VHDL Library
Interface

Function
Component

Figure 1: Interface Design Tool Concept

Section 2 presents a target board architec-
ture, a GTM operation scenario and the tar-
get FPGA design structures. Section 3 gives
the interface speci�cation. Section 4 describes

the interface design generation. Section 5 con-
cludes the paper.

2 Methodology Overview

2.1 Target Board Architecture

The target FPGA board may contain multiple
FPGA chips, each with an array of heteroge-
neous memory ports. Di�erent ports may have
di�erent sizes in terms of storage capacity and
port width. Here an assumption is that all
FPGA chips on the board have the same struc-
ture and there is no direct connection between
them. This is because the GTM operations
are relatively easy to partition among di�erent
FPGA chips. Di�erent FPGAs can work on
di�erent regions of an image frame or with dif-
ferent templates in parallel without the need
for inter-FPGA communications. As a result,
the interface design method considered in the
paper focuses on single FPGA chip. The target
board architecture can be described by a set
of parameters that denote the number of FP-
GAs, the number of memory ports, the width
of memory data ports, and so on.

M I

Host

FPGA

444 3444 21
portsmemoryn

M1 ••• Mn

M I

H I

DW1 AW1 DWn AWn

Tag
Data

FIFO
(Xbar)

Figure 2: Target Board Architecture

Figure 2 shows such a board structure with
one FGPA where the dotted line and box are
optional. The host may access the on-board
memory either directly or through the FPGA
chip. Also the host may access the FPGA

through a FIFO (and/or a Xbar). DWi and
AWi represent the width of the i-th memory
data port and address port, respectively. A
library of VHDL components for the memory
interface (MI) and the host interface (HI) is
assumed to be available.

2.2 GTM Operation Scenario

The computation of a GTM operation is to
move a template (or mask) pixel by pixel in
scanning line order, similar to the \Sliding
Window-Based Operations" (SWO) as in [2].
The GTM is more general in that all the pix-
els (or samples) in a SWO \window" (or mask)
are involved in the window computation while
in GTM a template may be quite \sparse" and
only a low percentage of pixels in a \window"
is involved in the computation.

In this paper, the FPGA portion handling
the computation involved in applying one tem-
plate to a pixel location is called a Basic Func-
tion (BF). In the case that one memory port is
wide enough to provide more than one pixel in
parallel, a group of BFs may be used for par-
allel computation [1]. Such a group of BFs is
called a Unit Function (UF). Combined with
an appropriate controller, a UF may be used
to apply a template to one image region (i.e.,
one set of image rows). In this case, the UF
and the controller together are called a Region
Function (RF).

Figure 3 shows the sequence of tasks in-
volved in the GTM operation from the FPGA
side. The �rst three tasks do not have to pro-
ceed in that order. After the �rst three tasks,
the fourth task applies the template on each
pixel location in the region. The host reads
back the results in the �fth task. The oper-
ation may then loop back to previous tasks.
Which task to start again depends on the par-
ticular GTM application or the FPGA board
used. For example, if the storage area is not
large enough to contain an image frame, the
�rst task needs to be repeated. The operation
may repeat the second task if there are mul-
tiple image regions. (Note that all pixels in
an image region are subject to the same set

1:Get Image Data From Host

2: Get Region Boundary From Host

3: Get Template From Host

4:Region Function Computation

Unit Function

5: Results back to Host

Figure 3: GTM Operation Scenario

of templates.) The third task may repeat if
there is more than one template for the same
image range. Note that the numbers of these
iterations are not required to be incorporated
into the interface controller. The computation
continues until the host stops initiating tasks.

2.3 FPGA Design Structure

If the FPGA design for a GTM operation is
represented hierarchically, Figure 4(a) shows
all the possible top-level control/data
ow
when only one memory port and one RF block
are considered. The dotted box HMI is a con-
troller that coordinates the transfer of data
between the host and the external memory.
When the host interface (HI) and the mem-
ory interface (MI) are driven by two asyn-
chronous clocks, a bu�er inside HMI is needed.
When the host is allowed to access the mem-
ory directly, the HMI is not required. The
data transfer through HMI can be either uni-
directional or bidirectional. Another function
of HMI is to reorder the image data so as
to support duplicated image data storage as
necessary. The box GC is a global controller
that controls all multiplexers at the top-level
and coordinates the execution of RFs when

there are multiple of them. In particular, the
Mux Sel signal controls the multiplexers, the
Reset signal resets the RF Controller (RFC),
and the Assert signal activates the RFC.

H I

M I

AW Tag DWout DWin

HMI

RF
UF

RF
Controller

Mux_Sel
Reset
Assert

GC

(a)

(b)

MI RF HMI HI

Figure 4: (a) A One-RF Design Inside an One-
Memory-Port FPGA (b) The Corresponding
Connectivity Graph

Figure 4(a) can be abstracted as a connec-
tivity graph as in Figure 4(b). The GC, the
RF-HI connections, and the multiplexers are
not shown in Figure 4(b) because the GC and
RF-HI connections are assumed necessary and
the multiplexers can be deduced from the con-
nectivity graph.

In case that a FPGA has two memory ports,
the FPGA can accommodate two RFs that can
in parallel handle two regions or handle two
templates on the same region. (Note that there
is no bene�t in having multiple RFs sharing
one memory port.) An alternative is to use
only one RF that gets its input data from both
memory ports at the same time. This should
speed up the evaluation of a template on a pixel
location. The connectivity graphs for these two
design options are shown in Figure 5.

MHI2

RF

HMI1

MI1

(a) (b)

RF1 RF2

MI1 MI2 MI2

HMI1 HMI2

HI HI

Figure 5: Two Possible Connectivity Graphs

RFC Re�nement The RF controller inside
the RF block is responsible for the following
functions: (1) receiving the region boundary
from the host, (2) receiving the template data
from the host, (3) sending the result data and
the status information to the host, and (4) con-
trolling the UF to iterate through pixels in an
image region and the data transfer between
FPGA and memory. Therefore, the RF con-
troller can be divided into four separate parts,
one for each function, as shown in Figure 6
where RC stands for Region Controller, TC the
Template Controller, RSC the Result and Sta-
tus Controller, and LC the Loop Controller.
The \Ok" signal from the UF means that the
UF computation results are ready while the
\Done" signal indicates that the UF compu-
tation is �nished.

TC

Template

 M_EN

Results
Status

Start
Ok
Done

 M_RW

LC

RSC

Region

Assert

Reset

RC

G
C

H
I

U
F

M_Addr

M
I

Figure 6: RF Controller Structure

2.4 Interface Design

From the above discussion, the interface design
for the GTM operation is to generate the Con-
nectivity Graph (CG), the Global Controller
(GC), and the RF Controller (RFC). Note that
MHI, HI, MI, and UF are assumed to be avail-
able. In order to automate the interface de-
sign process, we need to provide some inter-
face speci�cations aside from the target board
architecture and the interface components in li-
braries. They are Task Schedule (TS) and UF
Timing (UFT). Figure 7 shows the relationship
between the generators and the speci�cations,
and identi�es the sections where each topic is
presented in more detail.

CG
Generation
Section 4.1

GC
Generation
Section 4.2

RFC
Generation
Section 4.3

Task Schedule
Section 3.1

UF Timing
Section 3.2

Complete
VHDL Design

Linking

Figure 7: Speci�cation And Generation

3 Interface Speci�cation

3.1 Task Schedule

Figure 3 shows �ve tasks for a GTM opera-
tion. Each RF is supposed to execute these
tasks. The task schedule is an ordering of the
tasks performed by each RF. All tasks sched-
uled at the the same time are to be executed in
parallel. When there is only one RF, the task
schedule can be as trivial as (T1, T2, T3, T4,
T5) where Ti stands for the i-th task. When

there are multiple RFs, there are more options
in the scheduling of tasks.

For example, if two RFs work with the same
templates but on di�erent regions, a possible
task schedule is shown in Figure 8. Schedul-
ing the �rst tasks of both RF1 and RF2 at
the same time implies broadcasting the image
data from the host to RF1 and RF2. Since
RF1 and RF2 work on di�erent regions, they
cannot receive the region boundary (T2) at the
same time. And because they share the tem-
plate, they can receive templates (T3) simul-
taneously.

Order 1 2 3 4 5 6 7
RF1 T1 T2 T3 T4 T5
RF2 T1 T2 T3 T4 T5

Figure 8: A Possible Task Schedule

3.2 Unit Function Timing

In this paper we assume that a pipelined
FPGA design of the UF is created prior to the
design of interface, even though an optimal UF
design is impossible without considering the in-
terface part. In order to control the UF com-
puting through pixels in a region, the feeding
of data to UF, and the storing of UF results
in memory, the number of pipeline stages and
the timing of the pipelined UF design must be
speci�ed. The timing refers to when the input
data are consumed or the results are produced,
and so on.

Figure 9(a) shows a simple UF timing where
stage R reads data from memory, stage W
writes data to memory, and stage C computes.
This speci�cation tells us that the UF takes
the �rst six clock cycles to consume data from
memory (and possibly compute at the same
time), then three clock cycles to do other op-
erations, and �nally two clock cycles to write
results to memory. If the UF accesses two or
more memory ports at speci�c stages, these
stages are labeled with distinct R's or W's.
Figure 9(b) shows such an UF timing where

R1 and R2 denote reading of di�erent memory
ports, while W1 denotes writing to the same
memory port as used by R1.

 R C W
 6 3 2

(a)

 R1 R2 C W1
 3 3 3 2

(b)

Figure 9: UF Timing

4 Interface Design Generation

4.1 CG Generation

The connectivity graph can be generated with
the information provided by the task schedule,
the UF timing, and the target board architec-
ture. The task schedule and the UF timing are
supposed to be produced by a GTM optimiza-
tion tool still under study.

The task schedule provides the number of
RFs. From the UF timing the minimum num-
ber of memory ports per UF is known. It is
easy to bind the memory ports to RFs when
the memory port information can be obtained
from the target board architecture. There may
exist more than one CG that satis�es all the
constraints. In that case, it provides us an op-
portunity to select the best design.

The following example illustrates how the
connectivity graphs are generated. Suppose
that there is only one RF with a trivial task
schedule, and that the UF timing is as shown in
Figure 9(a). If there is only one memory port
available, two connectivity graphs as shown in
Figure 10(a) and (b) can be produced. If two
memory ports are available, then there exists
at least one more CG as shown in Figure 10(c).

It is worth mentioning that we implemented
and compared these three di�erent designs on
an Annapolis Micro Systems's StarFire board
with one Virtex XCV1000 FPGA chip. The
FPGA areas used by the designs (a), (b) and
(c) increase in that order, but the design (a)
can run at 35MHz clock, the design (b) at
40MHz, and the design (c) at 45MHz. This

(a) (c)

HI

HMI1

MI1

HMI2

MI2

RFRF

MI

HMI

HI

(c)

HI

HMI1

MI

HMI2

RF

Figure 10: Three Designs

shows an area/speed tradeo� and a need to
provide the area/time estimate in the case
when an optimal design is desirable.

4.2 GC Generation

After the connectivity graph is obtained, the
requited multiplexers can be added to support
the CG. Then, the global controller, or the tim-
ing of the Mux Sel and Assert signals can be
generated from the task schedule. This is pos-
sible because the task schedule contains the in-
formation about when the host and which RF
will access (read or write) the memory, and
when RFs start working.

4.3 RFC Generation

RFC includes RC, TC, RSC and LC. RC, TC
and RSC control the corresponding storage
(region boundary, template, or result) on the
FPGA. In order to detect which types of data
are coming from the host and when, there is
a need to create a memory map that shows a
one-to-one mapping between storage types and
HI signals. This map can be built by using a
HI speci�cation that will be part of the inter-
face library. Because di�erent FPGA boards
may have di�erent tagging patterns to indicate
data communication between the host and the
FGPA, di�erent FPGA boards need to have
di�erent HI components and HI speci�cations
in the library.

LC Generation For the LC generation, we
need to know the MI speci�cation in order to
set up the memory access to and from UF.
The MI speci�cation should be associated with
a set of parameterized VHDL components in
the library. These components need to deal
with various memory access operations, such
as burst read, burst write, and so on.

The RF loop control performed by LC can
be generated by using the UF timing and the
connectivity graph. For example, Figure 9(a)
shows an UF pipeline timing. If the connectiv-
ity graph is as shown in Figure 10(a) or (b),
then the RF loop pipelining will be as shown
in Figure 11(a). If the connectivity graph is
as shown in Figure 10(c), then the RF loop
pipelining will be as shown in Figure 11(b)
where \Read" and \Write" accesses to di�er-
ent memory ports. In this case it should be en-
sured that no hardware sharing exists between
\Read" and \Write" stages.

 R1 R2 C W1
 3 3 3 2

 R1 R2 C W1
 3 3 3 2

 R1 R2 C W1
 3 3 3 2

 R1 R2 C W1
 3 3 3 2

(c)

(a)

 R C W
 6 3 2
 R C W
 6 3 2

 R C W
 6 3 2

 R C W
 6 3 2

(b)

 R1 C W2
 6 3 2

 R1 C W2
 6 3 2

 R1 C W2
 6 3 2

Figure 11: Loop Pipelining

Note that the UF computation has 11 stages.
With the �rst solution, the UF computation

has a pipeline period of 8. That is, a new
UF computation is started every 8 clock cy-
cles. The second solution has a better pipeline
period of 6 at the expense of using one more
memory port. In both cases, the throughputs
are constrained by the memory bandwidth.

Take another example. Suppose that we
have an UF timing shown in Figure 9(b) and a
connectivity graph shown in Figure 5(b). Then
the RF loop pipelining as shown in Figure 11(c)
can be used. The pipeline period of this design
is 5 which is better than that of the second
solution although they both use two memory
ports. But the tradeo� is that with the last
solution no hardware sharing should exist be-
tween the two \Read" periods and the control
logic will be more complicated.

5 Conclusions

This paper describes the design of interface
among FPGA, host processor, and on-board
memory for the mapping of generalized tem-
plate matching (GTM) on recon�gurable com-
puters. The controller required for such an in-
terface is also proposed. The interface design
is critical to the implementation of GTM oper-
ations on di�erent FPGA boards. In addition,
solving the interface problem systematically is
an important step in the development of a soft-
ware tool that automatically generates FPGA
designs for GTM operations. Researchers of
Wright State University are at the initial stages
of developing such a tool.

References

[1] J.S.N. Jean, X. Liang, and K. Tomko,
\Data Bu�ering and Allocation in Mapping
Generalized Template Matching on Recon-
�gurable Systems," in the Proc. of Parallel
and Distributed Processing Techniques and
Applications Conference, pp. 1111{1117,
June 1999.

[2] C. Thibeault and G. Begin \A Scan-
Based Con�gurable, Programmable, and

Scalable Architecture for Sliding Window-
Based Operations," in IEEE TRANSAC-
TIONS ON COMPUTERS, pp. 615-627,
1999.

