
Version Control Open Source Software for Computer Science Programming Courses
Mesafint Fanuel1, Tzusheng Pei1*,

Ali Abu El Humos1, Xuejun Liang1 and Hyunju Kim2

1Department of Computer Science
Jackson State University

Jackson, MS 39217
{mesafint.d.fanuel@students.jsums.edu}{tzusheng.pei, ali.a.humos, xuejun.liang}@jsums.edu

* Corresponding author
2Department of Mathematics and Computer Science

Wheaton College
Wheaton, IL 60189

hyunju.kim@wheaton.edu

Abstract—The programming experience gained in a computer
science programming course is hugely inadequate in creating the
next generation of capable developers. This is because the small
lines of code students write in class are not demonstrative of
software development as it occurs in industry. Thus, most
computer science students lack critical skills needed to be capable
developers. In addition to that, teamwork is crucial in the
development of new software or the maintenance of old systems.
This project has built an in-house version control system using
only open source products to provide students with the platform
to experience collaborative development. This educational
environment will instruct students on Open Source Software
(OSS) community. It will familiarize students with writing large
scale software code and introduce them to version control tools
hugely utilized in software development. Students will experience
the various aspects of software development by playing different
roles while allowing instructors to easily track student activities.
Consequently, students can reuse the code and artifacts as
examples or basic frame works for their development. Coding
projects progress can be easily tracked by the instructors and
team leaders.

Keywords—version control, software development, Open Source
Softwar, GitLab

I. INTRODUCTION

A major challenge in teaching software engineering
is the gap between real development activities and the
materials taught in class. Being highly invested in the
theoretical, most of software engineering education doesn’t
prepare students for the industry. Students will be introduced
to the reality of software development the hard way once they
graduate. The best way to tackle this mismatch is through skill
oriented educational strategies. Programs students write in
class settings, being few hundred lines in length, are not
typical in real world development. Students need to be made
proficient in writing large scale software products through
team work (collaboration).

Students need not only lectures but an experience in
problem modeling, algorithmic thinking, collaborating with
team members, and following the software development life
cycle. They need to be induced to put in thousands of hours of
coding practice to master the trade of software developer. This
paper reports our effort to adopt an OSS community model to

educate CS students in software engineering, specifically
collaborative software development. We built a client-server
system to support students' software development and team
activities. Students can learn from real-world code examples
and team dynamics by participating in OSS projects that are
hosted at the community system.

II. BACKGROUND

Open source software tools have been used in CS
education in order to teach traditional or online CS courses,
such as programming, data structures, algorithms, and
software engineering [2, 8, 9]. Although such previous
practices simply used OSS tools to teach the subjects, they
demonstrated that the use of OSS in classrooms resulted in
positive impacts.

In addition to using OSS tools several studies have
also brought OSS projects to the classroom [3, 4, 10, 12].
Finding have shown that OSS projects provide students a
unique opportunity in developing software in a real-world
environment. By participating in these projects, students not
only sharpen their coding skills, but also learn how to work
with teams. They also become more familiar with intellectual
property, software licensing issues and acquire working
knowledge on the domains the project revolves around [1].

Nevertheless, teaching Computer Science students
software engineering using open source projects brings a set of
unique challenges to the classroom. The code bases of open
source projects as well as the tools used to collaborate on them
are complex. Students will not have the time to make concrete
contributions to a project in academic terms since it will take
weeks for them to even get well informed about the project.

 Setting up a development environment suitable to
everyone can be complicated in light of varying degrees of
familiarity students have to tools and platforms. Open source
Communities also have particular development methodologies
and norms that one can learn only through extensive
participation in them. Furthermore, class academic calendars
may not overlap with a projects release schedules. This makes
joint work even more difficult.

Int'l Conf. Software Eng. Research and Practice | SERP'17 | 127

ISBN: 1-60132-468-5, CSREA Press ©

Thus, instead of embedding students into preexisting
communities it is sensible to let students create their own
communities which could start out as assignments posted by
the instructor. This assignment could be month long codes.
And by giving software engineering courses for two semesters
or more, or by crafting the appropriate educational model,
students will be able to deliver dozens of large scale (1000 or
more lines) of OSS software per year. This will greatly
increase their coding and team work skills. Instructors will
give regular grades to the students by checking the work being
done on the Open source community. This paper reports our
effort to establish such a teaching environment called Student-
Source for such OSS benefits while minimizing the identified
limitations.

III. THE STUDENT-CENTERED OPEN SOURCE
SOFTWARE (SOSS) COMMUNITY

A fundamental paradigm shift in software
engineering education will be the unintended outcome of
Student-Source. By allowing students to work on semester
long—even year round—projects, grades will escape the
confines of the traditional classroom. By default, students will
have a plethora of project code and artifacts accumulated at a
central location. Thus, the community system acts as a virtual
classroom, and students learn by examples and from peers.
The grade they will gate will count to their senior project or to
an overall course requirement.

Furthermore, Student-source will afford a different
standard of instructor to student interaction. A CS student’s
education will not jus be theoretical but experiential. The
traditional confines of the classroom will be supplemented by
development activities on the community system. As students
learn more throughout the year they will add a little to the
OSS projects they are undertaking on the system. Students can
also work on the various OSS projects taking place on the
system as well.

Most development of OSS happens in university
initially. The tool will make the university a hub of OSS
development activity. Many projects will be started. It will be
an enabler in creating a microcosm of the real software
industry in the university setting. Overall Student-Source will
provide active learning environment, which allows
collaborative learning, intuitive learning, role playing, etc.

A. Structure and Functionalities

The front end of Student-Source contains a web site
that allows user to log in or create a user account through
Google OAuth authorization protocol. We implemented the
Google OAuth authorization protocol along with the
restriction that the domain must match one of the institution's
email domains. Google OAuth gives users the ease of creating
accounts automatically by just signing into our institutional
email system that is supported by Gmail. These functionalities

keep the scope of Student-Source within the confines of the
university.

Another way we created a controlled teaching
environment is by disabling public visibility level of Student-
Source. Student-Source offers three visibility levels on project
repositories. By visibility level we mean permission types to
one’s code and project artifacts. This visibility types are
private visibility meaning repos are available to users
explicitly given access, internal visibility gives access to any
user logged in and public visibility gives access to anyone for
free.

All users will be categorized as either admin or
student. Each category possesses different permission levels
that can access diverse functionalities of Student-Source.
Students have traditional permission and control just like any
conventional user of version control tools such as GitHub.
They can clone project, pull projects, collaborate on projects
and so forth. A list of student activities on the system appears
on the student dashboard page. Various other features exist on
Student source web frontend as well making the system a
highly integrated and rich platform for users.

 Admin users have an overall view of the system
from their admins control panels. They can post
announcements on Student-Source through the announcement
feature. Admin rights can be given to instructors so that they
can easily track everything that is happening. In future works,
we seek to dissect admin and create a new user role called
instructor with its own permission levels and advanced
functionalities. Already our team has implemented a faculty
forum page for instructors on the system.

On the backend, Student-Source is hosted on a Nginx
web server, and this in turn runs on an Ubuntu 14.04 host
machine. The community users can access their project
repositories by using Git client or EGit, which is supported by
Eclipse. EGit works with JGit (the Java implementation of
Git). Currently, the server is running on a generic desktop
with a quad-core processor and 4GB RAM. Student-source
functionality is backed by a PostgreSQL database.

Fig. 1. The SOSS server architecture.

128 Int'l Conf. Software Eng. Research and Practice | SERP'17 |

ISBN: 1-60132-468-5, CSREA Press ©

B. Open sources software’s used

 Built on top of the famous web-base Git
management tool, GitLab, our Student source contains all the
rich features of these management tools. These features
include issue tracking, built in wiki systems, protected
branches, code snippets, project importing and unlimited
public and private repositories. Projects can be organized into
private, internal or public and access to them can be managed
with five different users setting for external users.

 We decided to use GitLab because it is Git server
based upon the famous source code management tool, Git. Of
all the source code management tools out there such as
subversion, mercurial, we found Git to be by far superior. It is
the default version control system for large open source
repository websites such as GitHub and Bit Bucket. Previous
surveys have also shown Git to be the most preferred version
control tool.

The benefits of Git include a full history of code
changes so that a user can easily pull previous versions of the
code, and a branch mechanism so that the user can develop
and test different scenarios on the code. Additionally, its
repository-to-repository interaction allows the user to share
entire branches between repositories.

IV. UTILZIING STUDENT-SOURCE

The SOSS Community system was first introduced
graduate and undergraduate software engineering courses
during Fall 2014 semester in the Department of Computer
Science at Jackson State University. In subsequent years we
have introduced the system to lower level CS and CE classes
at our institution. These efforts have brought to light
challenges that need to be tackled before a complete adoption
and a successful application of student-source in Software
engineering.

As identified earlier, it is challenging to get the
student body used to the system and its corresponding
collaboration tools. Currently our team uses a series of
modules to be distributed in classes during our brief
introductory sessions. These short modules contain a clear step
by step guide on how to get started on Student-Source. While
students have overall been successful in following guidelines,
the experience has highlighted the need for students to grasp
concepts related to Student source more successfully as a
prerequisite.

Our team realizes the necessity of having deeper
introductory sessions to teach students Git and basic CLI
commands. An initial introduction of Git and CLI must also be
followed by a short phase of familiarizing students with them.
Such sessions could be held in programming labs in order not
to require fundamental changes to curriculums [13].
Furthermore, these sessions specifically and student-source in
general must be introduced to lower-level CS courses (e.g.

programming course) so that students can utilize the system
throughout the course of their CS education.

Secondly it is arduous to build a dynamic community
full of open source projects and usable OSS products based
purely on student initiative. An open source community needs
leaders, those who initiate the projects and oversea the various
projects. We have seen the tremendous role instructors will
play in this area. There unique position allows them to easily
be the instigators of various open source projects. By lightly
integrating Student-Source into their curriculum as a
supplemental material, instructors play the leading role in
building up dynamic communities.

While the overall impact of our efforts had been
positive, we have discovered the traditional road block to a
complete adoption of the community system. A community
needs leaders and the instructors are the initiators of projects
on student source. We propose an educational model were
instructors include Student-source as a supplemental material
to there curriculum. These will motivate students to play
active role in the community and build up various OSS
products.

V. CONCLUSION AND FUTURE WORK

Moving forward, we plan to introduce a third
category of users to the system, Instructors. The instructor user
will make student source more fit for the educational
environment. The instructor will be afforded a whole range of
actions such as checking student accounts and tracking student
activities.

Instructors should be able to grade students based on
various development and collaborative activities students do
on the system. A grading mechanism will grade students based
on the number of commits, number of insertions in the
commits, number of deletion in the commits, and total line of
code written by student as they are extracted from the total
number of commits done by the students. Other factors such as
number of collaborative task such as pulling project, adding
students, commenting on work and so forth will also be
factored out by the grading methodology. In conclusion, the
admin controls the system; the students collaborate on the
system, while instructors track student activities on the
system.

ACKNOWLEDGMENT

This work has been supported through the National
Science Foundation grant (HRD-1348565) on the SOSS
(Student- centered Open Source Software) Community. The
views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied,
of the funding agency.

Int'l Conf. Software Eng. Research and Practice | SERP'17 | 129

ISBN: 1-60132-468-5, CSREA Press ©

REFERENCES

[1] Bryan Behrenshausen, "Professors embed students directly into open
source communities", http://opensource.com/education/14/8/challenges-
to-open- source-computer-science-education, 2014.

[2] D. Carrington and S. Kim, "Teaching software design with open source
software", In Proc. of the 33rd ASEE/IEEE Frontiers in Education
Conference, 2003, pp.9-14.

[3] R. Charles and Y. Tao, "Evaluating student participation in open source
software development with an annotation model", In Proc. of the 4th

IASTED International Conference on Knowledge Sharing and
Collaborative Engineering, 532-063, 2006.

[4] H. Ellis, M. Purcell, and G. Hislop, "An approach for evaluating FOSS
projects for student participation", In Proc. of the 43rd ACM Technical
Symposium on Computer Science Education, 2012, pp.415-420.

[5] Git, http://git-scm.com.
[6] GitLab, https://about.GitLab.com.
[7] Google Developers, “Using OAuth2.0 to access Google APIs”,

https://developers.google.com/accounts/docs/OAuth2.
[8] S. Lakhan and K. Jhunjhunwala, "Open source software in education",

Educause Quarterly, vol. 31, no. 2, 2008, pp.32-40.

[9] D. Lipsa and R. Laramee, "Open source software in computer science
and IT higher education: a case study", International Journal of
Advanced Computer Science and Applications, vol. 2, no. 1, 2011,
pp.43-54.

[10] Antoine Melki, "Proprietary versus open source software in support of
learning in computer science", In Proc. of the 2014 Federated
Conference on Computer Science and Information Systems, 2014,
pp.111-115.

[11] Ian Skerret, "Eclipse community survey 2014 results",
https://ianskerrett.wordpress.com/2014/06/23/eclipse- community-
survey-2014-results/, 2014.

[12] S. Sowe, I. Stamelos, and L. Angelis, "An empirical approach to
evaluate students participation in free/open source software projects", In
Proc. of IADIS International Conference on Cognition and Exploratory
Learning in Digital Age, 2006, pp.304-308.

[13] L. Vu, T. Tan, and P. Maneerat, "Incorporating open-source software
development into computer science and software engineering education
at university level", In Proc. of the 2nd Australian Undergraduate
Students’ Computing Conference, 2004, pp.149-164.

130 Int'l Conf. Software Eng. Research and Practice | SERP'17 |

ISBN: 1-60132-468-5, CSREA Press ©

