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Mapping d Generalized Template Matching orto
Reaonfigurable Computers

Xugjun Liang and Jadk Jean

Abstract—I mage processng algorithms for template matching,
2D digital filtering, morphologic operations, and motion
estimation share some cmmon properties. They can all benefit
from using reconfigurable @mputers that use @-processor
boards based on FPGA (field programmable gate arr ay) chips.
This paper characterizes those applications as generalized
template matching (GTM) operations and describes the mapping
of the GTM operations onto reconfigurable computers. A three-
step approach is described. The first two steps enumerate and
prune the design space of basic GTM building blocks, which
consist of FPGA buffers and GTM computation cores. The last
step is to achieve a solution through an optimal combination of
these building blocks where the st function is the FPGA
computation time and the mnstraints are FPGA co-processor
board resources. Various FPGA buffers are presented so as to
introduce design options of basic GTM building blocks.
Algorithms used for the mapping are described. Experimental
results are summarized to reveal the rdationship between the
GTM mapping results and FPGA board resource parameters.

Index Terms—FPGA, Rewmnfigurable Computing,
Analysis, High-Level Synthesis, Template M atching

I mage

|. INTRODUCTION

Recnnfigurable omputers  can  offer  significant
performance alvantages over conventional processors as
they can be tail ored to the particular computational needs of a
given application. The technology has been demonstrated for
the accéeration of various applicaions aich as automatic
target recognition (ATR) [1]-[3], image processng [4],
madine vision [5], and morphology operation [6]. However,
the programming of reconfigurable wmputers is extremely
cumbersome, demanding that software developers also assuime
the role of hardware designers. Thus, one key to unlocking the
full potential of these systems is developing truly automatic
mapping todls. Moativated by such a need, this paper focuses
on the mapping of generalized template matching (GTM) onto
reconfigurable mmputers to help designers explore the design
space ad get anea optimal GTM design.
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The remnfigurable computer addressed in the paper is a
host computer with a -procesor board based on field
programmable gate arays (FPGASs). The target FPGA board
may contain multiple FPGA chips, eat with an array of
homogeneous memory banks. Fig. 1 shows such a board
structure where the dotted line and bax are optional. The host
may accessan on-board memory either diredly or throughthe
FPGA chip. The host may also access the FPGA through a
FIFO (or a Xbar).
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Fig. 1. Target Board Architecture

In Fig. 1, there ae n memory banks for ead FPGA chip.
Although a memory bank may be double-ported so as to allow
concurrent access of the host and the FPGA chip, eadh
memory bank is considered as snge-ported as far as the
mapping processis concerned. So the words “memory bank”
and “memory port” are used interchangeably in the paper. All
memory banks have the same sizes in terms of storage cgadty
and pat width. All FPGA chips on the board have the same
structure and there is no dred connedion between them.
Copies of the same image frame may be stored in different
memory banks to fadlitate the evaluation of multiple
templates. One image frame may be distributed among
memory banks, sometimes with overlapping, to enable parall el
evaluation of a single template. The host madiine is
responsible for the distribution of image frames to memory
banks.

The generdized template matching (GTM) operations
proposed in the paper include image processng algorithms for
2D digital filtering, morphologic operations, motion
estimation, template matching and so on. They all involve
moving a "window" (or template) pixel by pixel in a scanned
line order. The GTM operations are similar to the "Sliding
Window-Based Operations' (SWO) as in [7]. However, the
GTM is more general in that al the pixels (or samples) in a
SWO window are involved in the window computation while
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in GTM the template in a window may be quite "sparse” and
only alow percentage of pixelsin awindow isinvolved.

The overall approach of building the GTM design contains
three steps. The first two steps enumerate, evaluate, and list
enough number of basic GTM building blocks, caled region
functions. Each region function contains an FPGA buffer and
a pipelined functional unit, cdled a unit function, which
evaluates the window computation at one or more wnseautive
pixel locaions. Different region functions have different
throughputs, occupy different FPGA areas, and require
different numbers of memory ports. The third step isto bind
one or more region functions to eaty FPGA chip so that the
total exeaution time is minimal under the FPGA board
resource ®nstraints such as the number of FPGA chips, the
size of FPGA chips, the number of memory ports, and the
width of memory ports. Region functions on all FPGA chips
work independently and in parallel on different image regions
and/or, if any, different templates under the cntrol of a host
program.

Related Research Works There have been many research
projeds on design environments for reconfigurable systems.
They include COBRA-ABS high-level synthesis g/stem [8],
PECompiler [9], SPLASH Environment [10], RAW Madines
[11], Napa-C compiler [12,13], Rapid (Rapid-C) [14, 15],
GARP Compiler [16], DEFACTO [17], and Singe
Assgnment C [18]. These system tods are usually aimed to
suppat more genera applicaions than the GTM operations
and targeted to their particular architedures. Therefore it is
difficult for them to explore the paralelism inherent in the
GTM operations. In contrast, the various levels of parallelism
of GTM operations can be explored systematicdly by the
propocsed mapping methoddogy. In addition, the GTM
mapping is not geared to particular hardware components such
as the dynamic oontrol in the Rapid structure.

Brilli ant FPGA designs have previously been propased for
some particular GTM applicaions, including automated target
recognition (ATR) and 2-D convolution. These designs
provide a d¢ue for us to attadk the GTM mapping problem
systematicdly, although the design optimizaion with resped
to the diange of FPGA resource parameters is usually not
considered in these individual designs.

Very different mapping strategies are used in [2] and [3]
even though they are for the accéeration of the same ATR
algorithm which requires correlating a huge number of
predefined hinary templates to the image aeaof interest. The
reseachers at UCLA use very compad adder trees that take
advantage of template sparseness and FPGA lookup-table
memory cgoability [2]. Their approach maps template
information diredly into the hardware and relies on fast
reconfiguration to switch template information. They also take
advantage of template overlap by computing the results of
multiple orrelations gmultaneoudly. In contrast with this
method, the reseachers at BYU use daticdly configured
hardware axd memory-stored templates [3]. The technique
computes the correlations column by column, and sums up the

partial sums for all columns of template. In this method all
column correlations are wmputed in parallel but only one
column of data needs to be available for procesgng. This type
of bufferingiscdled partia bufferingin[19].

The 2-D convolution is an esential image-processng
function. The aithors of [20] discuss ®vera architedural
solutions to a nvolver design. The achitedure for a
complete 3x3 convolver includes ift registers for pixel
values contained in delay lines and for the 3x3 convolution
window. Because of these shift registers, the convolution can
be caried out one pixel locaion ead clock period. This type
of buffering is cdled full buffering in [19]. Note that an
aternative implementation of delay lines is to use the
Configurable Logic Block (CLB) RAMs or Block RAMs
inside Xili nx FPGAs.

One technique used in parallel compilers is closely related
to the reseach. It is the software pipelining (or modulo
scheduling) [21]-[23] that alows overlapping exeaution of
conseadtive loop iterations, with one fixed schedule for the
loop bog. In the paper, this technique is employed for the
mapping of the GTM operations that can be charaderized as
nested |oop computations.

Since for many applicaions the throughput of the
reconfigurable @processor is limited by external memory
accesss, it is very important to speal up the memory access
by buffering frequently used data on-chip and scheduling as
many external memory accesses in parallel as possble. The
problem of buffering image data has been well studied [3],
[20], [24], and [25]. In [24], [25 efforts were devoted to
identifying data buffers for a nested loop from a compiler's
perspedive. Because their problem domain of nested loopsis
more general and therefore more difficult to handle than GTM,
no effort was attempted in [24], [25] to optimize the buffer
design urder constraints of available resources. One way to
schedule & many external memory accesses as posshle in
paralé isto dstribute arays over several memory banks. The
paper in [24] formulates the aray alocation problem as an
Integer Linea Programming problem. In the formulation, one
array is restricted to be dlocaed on one memory bank. This
may eliminate the chance in which the paralelism could be
achieved by using multiple memory banks for one aray such
as an image. The Napa-C compil er [13] also demands the same
restriction. In our approach, one image aray can be
overlapped and distributed over several memory banks.

In [6] atwo-level compil ation scheme generates high-speed
binary morphology pipelines that can handle a sequence of
morphology templates described in a script file. The binary
templates are dl of size 3x3 and individual operations can be
implemented with the same hardware drcuit, cdled a
supercdl, that contains a full buffer and a 256-bit look-up
table (8-bit input and 1-bit output). The first-level compiler,
used only once given an FPGA board, generates a set of
supercdls with fixed connedions that will fit in the FPGA
chips. The second-level compiler can customize the look-up
tables depending on the script file contents. The gproach has
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many advantages. One of them is very high compil ation speed
becaise gplicaion users only neal to use the secnd-level
compil er that takes ssoonds ead time. The gproach may not
be feasible for more complicated templates. For example, it is
not pradicd to use a singe look-up table for a 3x3
convolution window on 8-bit pixels.

The paper is organized as follows. Sedion Il describes the
GTM mapping problem. Sedion Il presents the mapping
methoddogy. Sedion IV gives experimental results. Sedion V
concludes the paper.

Il. GTM MAPHNG PROBLEM

In the following, the GTM terminology and some basic
asumptions are given in Sedion A. The GTM mapping
problem and various design options are described in Sedion B.

A. GTM Terminology

The following example in C language syntax is used

throughout the paper.
Example 1:
for (i=0; i<450; i++) 03%9.9:9.9.9.9.9-:9.9.94
for (=0 j<360; ja+){ SCRBRERSSSK
V0= 1 1 +3) IR RKRK
X XAXXX

X[i+1 jl+x[i+ 1+ 1+, j+2]+ XX
xfiv2 [lxi+2 j12x[i42,43]) ] KRR EKIRS

The adive points in a template include dl the points
necessary for the template computation. A template is usually
spedfied with, for eat adive point, the adive point location,
which denotes the offset of the adive paint in the template,
and the adive point value, which denotes the "weight"
asociated with the adive paint. In Example 1 the number of
adive points is nine, and the adive point locaions are (0,0),
(0,2), (0,3), (1,0), (1,1), (1,2), (2,0), (2,2) and (2,3), and the
adive point values are dl ones.

The loop bod that is iterated pixel by pixel through an
image is cdled a window function. A window function is
evaluated by applying one template & one pixel locdion at one
time. In Example 1 the window function is the summation of
nine image pixels at adive points. A GTM operation is the
applicaion of a window function to an image frame. The
image frame may be partitioned into several image regions IR;
(i=1,2,..)n), eat being a set of conseautive image rows. For
the evaluation of a window function in ead IR;, there is a set
of templates{ T, Ti2, ..., Timg)}- Different image regions may
asciate with different sets of templates. A GTM operation
thus can be formulated as the following rested loop

computation.
Forali <1lton /fdl image regions
For all j<1 to m(i) /fal templates
For all pixel PinIR /al pixels

Window-Function (P, T;;)
From this formulation, the GTM operations may possss
two levels of parallelism. First, for the evaluation of awindow

function different templates can be gplied in paralel. Thisis
cdled template-level paralelism. Seand, the evaluation of a
window function can be caried out in parallel at several pixel
locaions. This is cdled pixel-level parallelism. Some further
assumptions about the GTM operations and FPGA designs are
given below in order to narrow down the scope of the paper.
Asamptions (1) and (2) are related to GTM operations.
Asaumptions (3) to (5) are related to the GTM FPGA designs.

(1) Only one image is procesed in a GTM operation. The
size of the image frame ad the sizes of al i mage regions are
avail able before mapping.

(2) No loop-cary dependency existsin awindow function.

(3) The input image data ae stored on the off- chip memory
of FPGA boards. The output data ae dso stored on the off-
chip memory. An upper bound of the number of output datais
known beforehand.

(4) The default FPGA design style is generic. The generic
design style treds the template data (weights and locations) as
variables. Therefore, a generic design can be used in the
window computation of multi ple templates. If the other design
style, a hard-coded one, isto be used instead, the template data
need to be mnstants and avail able before the mapping. It is
asaumed that there is only one image region in any hard-coded
design.

(5) An FPGA library of operator and storage mmponents
are available. Thelibrary also containsthe aea ad the timing
information.

Some notations used in the paper are listed in Table 1 for
convenience. Some of them will be eplained later. In
Example 1, Nap=9, Nuw=1, Rwin=3, Cwin=4, Rime=360, and
CIMG:450-

TABLE 1: GTM NOTATIONS

Ngits No. of Bits per Image Pixel

Civc No. of Image Columns
Cwin No. of Columns of Template Window

Nmw No. of Memory Writesin aWindow Function

Nap No. of Active Points

Rima No. of Image Rows
Rwin No. of Rows of Template Window

Nup No. of Memory Portsto an FPGA Chip

Np No. of Memory Ports Used (NpsNyp)
Ngr(P) | No. of Realsfrom Memory Port P

Ng No. of Reads in Window Evaluation
Nw No. of Writesin Window Evaluation
Nw(P) | No. of Writesto Memory Port P

Nig No. of Line Buffers

N g(P) | No. of Line Buffers for Memory Port P
PF Packing Fador

B. GTM Design Options

Design options in the GTM mapping process can be
grouped into those for the window movement (data buffering
and padking in Sedion 1), the window function evaluation
(unit function in Sedion 2), and the integration (region
function in Sedion 3). The GTM mapping complexity is
discussd in Sedion 4.
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1) Data Buffering and Packing Strategies for GTM
Operations

The data buffering and pading can be used to suppat the
pixel-level paralelism of GTM operations and to reduce
redundant memory accesses. The full and partial buffering and
the padking structures were described in [19]. The basic idea
of bufferingand padingis reviewed and generalized here.

When no image datum is buffered inside the FPGA chip, the
window computation at ead pixel locaion needs to read Npp
pixel values from the memory. Since Nap is usualy much
larger than one, it is desirable to buffer image data inside the
FPGA chip. The window function evaluation at a new pixel
locdion with the full buffering reeds only one image pixel
from the external memory, whereas with the partial bufferingit
needs Ryy image pixels. When the number of image pixels
provided from the externa memory is less than Ry,y and
greder than one, a hybrid buffering scheme is needed. Thereis
a trade-off in minimizing the memory access and the buffer
size

For a 3x4 template window, the full buffering requires two
image line buffers, whil e the partial buffering does not require
any line buffer. Fig. 2 shows a hybrid buffer with one line
buffer for a 3x4 template window where =Cyg. Pixels 0, 1,
2, and 3 are in the first row of the template window, pixels
c+0, c+1, c+2, and c+3 in the second row, and pixels 2c+0,
2c+1, 2c+2, and 2c+3 in the third. Pixelsfrom4to c-1 arein a
li ne buffer. When the window moves to the next pixel locaion,
two pixels c+4 and 2c+4 neeal to be read from the externa
memory. A control circuit is needed to enable pixel c+0, not
pixel 2c+0, to enter the line buffer.

Line buffer

0 1 2 34— 4 ..c1
¢ ¢ ¢ *ToWindow Function Memory
c+4, 2c+4

e

c+0| 2+0 <J
v v

o

c+l] Z+1 c+2| ZX+2 c+3| Z+3

Window Function

Fig. 2. Hybrid Buffering for a 3x4 Template

When several image pixels are stored in one memory
locdion, ead memory read can provide multi ple image pixels.
Therefore, it is posshble to use multiple mpies of the window
function hardware to compute & several conseautive pixel
locaions in paralel. In order to suppat this paralelism, a
spedal buffer cdled internal buffer is needed to dstribute
image pixels to the arresponding hardware [19]. The number
of copies of window function hardware used is cdled pading
fador (PF).

The buffering can be used together with the padking. Fig. 3
shows a hybrid buffering with padking where padking fador is
2. Pixels 0, 1, 2, 3, c+0, c+1, c+2, c+3, 2¢c+0, 2¢c+1, 2¢+2, and
2c+3 are in the even window. Pixels 1, 2, 3, 4, c+1, c+2, ¢c+3,

c+4, 2c+l, 2c+2, 2¢+3, and 2c+4 are in the odd window. All
the pixels with even addresss are in the top registers or the
top line buffer, whereas all the pixels with oddaddresses arein
the bottom registers or the bottom line buffer. When the
window computation proceeals to the next two pixel locaions,
two memory reals are needed. The first brings in two pixels
c+6 and c+7; the second brings in two pixels 2c+6 and 2c+7.
A control circuit is needed to enable pixels ¢+0 and c+1, not
pixels 2c+0 and 2c+1, to enter the line buffers.

? ? To Odd Window Function

—p| c2..6 —p| 4| 2| O
Line buffer ¢ ¢
Even Window Function Memory

AA A AA A

c+6, 2c+6

L—1 c+t0 | 240 |@— ct+t2 | Z2+2 |4— ct4 | Z+4 4——

c+7, 2c+7

—— c+l | Z+1 ¢— c+3 | Z+3 ¢ Cc+5 | Z+5 g—

v v vy vy

vy

Odd Window Function
31 1

¢ ¢ To Even Window Function

vy

—Pp| cl..7
Line buffer

Fig. 3. Hybrid Buffering with Pading (padking factor=2) for a 3x4 Window

In general, an FPGA buffer can be structured to use multiple
memory ports, and dfferent memory ports may suppat
different numbers of reads during the window function
evaluation. A general FPGA buffer with Np (1<Np<Nyp)
memory ports consists of Np FPGA buffers, eadh
corresponding to one memory port. These buffers can be full,
partial, hybrid, or internal buffers. The template window is
partitioned into Np regions, eat with several rows of the
template window and corresponding to one memory port. An
example of such a general FPGA buffer structure is siown in
Fig. 4. In this example, Ng=3 and Ryn=5. The buffer
structure uses two memory ports (Np=2), and therefore the
template window is partitioned into two parts. The top part is
for two rows of the template window. The rresponding
memory port supplies one image pixel during eat window
computation (Ng(1)=1), and thus is conneded to a full buffer.
The bottom part is for threerows. The port supplies two pixels
(Nr(2)=2), and thus is conneded to a hybrid buffer. Both
memory ports need to buffer one image line (N g(1)=N_g(2) =
1) aside from data inside the template window. Also, if the
number of adive paintsis lessthan the number of paintsin the
template window, a seledor that outputs only adive point
pixels is necessary when the generic design style is used.
Note that when the memory padking is involved, there could
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be more than one seledor [26]. In addition the shift registers
in Fig. 4 must have parallel outputs that are conneded either
diredly to the window computation part or through the
seledor.

V Image Line Buffer P Shift Register
J » s —p
Memory Port 1 - Shift Register - lle )
—p €
V Image Line Buffer > Shift Register (t:
o [P
J > -
Memory Port 2 K Shift Register ***
Shift Register ’ .
Template Window Active Point
Locaions

Fig. 4: A General FPGA Buffer Example

In the GTM mapping, such FPGA buffers are provided
when 1<Ng<Rwn. The internal buffers [19] to dstribute pixel
data to dfferent copies of window computation are provided
when Ng=Nap and PF > 1. No buffering strategy is considered
for Rwin < Ngr < Nap because of the complicaed memory
controller design and relatively few performance benefits.
Note it is assumed that Ryn < Nap, i.€., the number of adive
points is greaer than the number of rows of the template
window.

2) Unit Function

As discussd previously, when the padking strategy is used,
it is posdble to evaluate in paralel a window function at
conseautive pixel locations aong the scanned line. A unit
function is an FPGA pipelined hardware functional unit that
computes a window function at PF conseautive pixel locaions
by using PF copies of a window function design. The unit
function may share the hardware acoss these wpies. As a
result, there ae many unit function design options that trade
off hardware space ad speed. Thereis no predefined structure
of a unit function; a unit function design depends on the
scheduling of window function operations and the asgnment
of operations to hardware cmponents. The loop ppelining
technique of modulo scheduling is used in the unit function
design in this paper. Recdl that the window function is aloop
body. In modulo scheduling, iterations of a loop bog are
initiated at a constant time goart. This constant time (in clock
cycle) is cdled the initiation interval (Il) [21]. Therefore, the
throughput of a unit function is propartional to PF/II when the
number of iterations is large. In the GTM mapping, al
possble PFsand Il s are considered.

3) Region Function

A region function consists of a unit function and an FPGA
buffer as siownin Fig. 5. The Il of the unit function should be
equal to the data introduction interval, which is the dock

cycles nealed for external memory access (by the buffer and
the unit function) in ead window computation. Given a data
introduction interval, it can be proved that there exists a
modulo schedule of the unit function with 1l equal to it [27].
(Asaumption (2) in Sedion 2.1 was used in the proof.) The
region function iterates the exeaution of its unit function
through a set of templates (when the design style is generic)
and pixels in a part of image regions. So a region function is
obtained by combining one unit function and one FPGA
buffer, and then being assgned a set of templates and a part of
image regions. Also a region function has to be asdsgned to a
spedfic FPGA chip and the memory ports conneded to the
chip.

MEM MEM

FPGA v v

FPGA Buffer

Window
Function

Unit Function

Window
Function

Fig. 5: Region Function

One or more region functions sould be seleded for eat
FPGA chip such that the total exeaution time is minimal under
the FPGA board resource mnstraints sich as the number of
FPGA chips, the size of FPGA chips, the number of memory
ports, and the width of memory ports. Region functions on all
FPGA chips work independently and in paralel on different
parts of image regions and/or, if any, different templates under
the oontrol of a host program. Note that different region
functions on the same FPGA chip do not share the memory
banks becaise eab region function may need to access the
memory in every clock cycle during the computation.

4) GTM Mapping Complexity

A naive gproach is to enumerate FPGA buffers and unit
function designs and to compare dl the cmmbinations © as to
get the final region functions. The complexity of this approac
isvery highas shown below.

The number of different FPGA buffers (including ron
buffering and internal buffer) for a GTM operation is lower
bounded by n X Npr where n is the number of ways to
distribute memory reals for a window function among
memory ports and Npr is the number of all possble padking
fadors. Furthermore n = ny + n, where n; is the number of
ways of read distribution when 1<Ng<Rw,n and 1, isthat when
Nr=Nap. More spedficdly, n,isthe number of possble pairs
of vedors (Ng(1), ..., Nr(Np) and (N g(1), ..., N g(Np)) where
1<sNi<Nyp and 1<NgsRwy, that satisfy the following
conditions:
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p=Np

Ne= 3 Ne(p)

No@)=Ng(2)2..2Ns(N,)=1

p=Np

Run = Ng = z NLB(p)
o=1

NLB(p)ZOllS pSNP

And 17, is the number of vedors (Ng(1), ..., Nr(Np)) where
1<N <Nypand Ng=Nap, that satisfy the foll owing conditi ons:

p=Np

Ng = » Ng(p)
Na@ = Ng(2) 2..2 Ng(Np) =21

There ae no genera formula to express n; and n,. But the
growth of n,aloneis B(N 4™ ™).

In the unit function design, al possble PFs and IIs are
considered. For eadh pair of (PF, 1), the corresponding urit
function design reels to go through a pipeline synthesis
process which includes sheduling of PF copies of a dataflow
graph, resource sharing and hinding, and datapath and
controll er generation. For scheduling a general dataflow graph
(not a treg, the minimum-latency resource-constrained
scheduling problem and the minimum-resource latency-
constrained scheduling problem are known to be intracable
[31]. The scheduling in the GTM mapping hasto be performed
as many times as the number of al possble pairs of (PF, I1).

As to the building of region functions, given m FPGA
buffers and n unit function designs, there ae mn region
functions and the number of sets of region functions to be
considered is 2™. Note that the image region partitioning, the
processng region binding, and the template bindings have not
been considered yet.

Therefore, the cmmplexity of this naive gproac is very
high, and a much more dficient approach needs to be
developed. Note that, athough the mapping problem is
formulated as a @wnstrained optimizaion problem, there is no
attempt in getting optimal solutions in this paper due to the
problem complexity. Instead this paper propcses efficient
algorithms on getting “good’ solutions, hopefully “nea-
optimal” becaise of the solution optimality to some sub-
problems involved.

II. MAPANG METHODOLOGY

A. Overall Approach

The methoddogy of building an nea optimal GTM design
is to first enumerate, evaluate, and list enough number of
region functions, i.e., pairs of unit function and FPGA buffer,
and then to seled a subset of candidate region functions, bind
them to FPGA chips and memory ports, and pertition the total
workload among the region functions. It has threesteps.

Step 1. Enumerate dl non-dominated memory access
patterns (MAPs). The concept of MAP, as defined later, is a
key to the mapping process becaise bath urit functions and
buffer structures can be determined from a MAP.

Step 2: A set of region functions, one for ead non-
dominated MAP, can therefore be obtained. These region
functions can be ranked based on their throughputs, i.e., PF/11.

Step 3: The region function seledion and hinding and
workload partition are performed so as to minimize the total
exeaution time.

The first step is an enumeration process that requires an
efficient algorithm. The sewmnd step is a synthesis and
generation process For ead non-dominated MAP, a
corresponding urit function design can be obtained via a
synthesis process and a @rresponding FPGA buffer can be
generated. Then areas of the unit function and the buffer can
be estimated. The last step is a wmbinatorial optimization
process In the following, ead step is described in detail after
the input representations are introduced.

B. Input Representations

The inputs of the GTM mapping processinclude the FPGA
board spedficaion, the VHDL FPGA component library of
the operators, and the GTM operation spedfication.

The target FPGA board can be spedfied with the number of
FPGA chips (Nkpsa), the number of memory ports conneded
to an FPGA chip (Nyp), the width of memory port (Wport),
and the CLB (or SLICE) count of FPGA (Srrca)-

The VHDL library contains the information about the
operator and storage amponent VHDL designs, which should
include the aea ad the timing. The implementation of an
operator in the library can be dther pipelined or non-pipelined.
A non-pipelined operator is considered as a pipelined design
with only one stage. The timing of an operator can be
spedfied by two parameters, clock cycle and clock period. The
areaof an operator can be measured by FPGA CLB courts (or
SLICE counts). Because the library component information
may vary for different FPGA famili es, the library isrequired to
spedfy the FPGA family. The FPGA buffers are not included
in the library, becaise they can be generated by an FPGA
buffer generator.

The GTM operation spedficaion includes two parts. Oneis
the image regions and templates that include the number of
image regions, the number of templates associated with eah
image region, and the size of ead image region. The other is
the dataflow graph (DFG) of the window function. The DFG
nodes include input nodes, output nodes and operation nodes.
The input nodes include one type of particular nodes cdled
pixel nodes, which represent the input image pixels at the
adive points. Each operation node neels to spedfy the
resource type that is used to implement the operation. For
example, the window function of Example 1 in Sedion Il can
be represented with a DFG as down in Fig. 6(a). In this
example, the window function simply sums up nine image
pixel values at adive points. The nine drcle nodes at the top
represent the nine image data & the adive points, which may
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come from an FPGA buffer or diredly from memory ports.
The g/linder node & the bottom represents a memory write
operation. Fig. 4(b) shows another DFG, in which the hexagon
nodes denote the inputs of template weights at the adive
points. A spedal text format has been developed to describe
such aDFG.

@ (b)

Fig. 6: Two Dataflow Graphs

C. Sep 1: Memory Access Pattern Enumeration

For a given pair of PF (padking fador) and Il (initiation
interval), a memory access pattern (MAP) includes the
foll owing information.

1. The number of memory ports used (Ng), which should be
lessthan or equal to Nyp.

2. The number of memory reals (Ng(p)) from ead port, p,
(1=p<Np) in the Il clock cycles. The vedor (Ng(1),
Nr(2),..., Nr(Np)) is cdled the memory real pattern.

3. The number of memory writes (Nw(p)) to ead port, p,
(1=p=Np) in 1l clock cycles. The vedor (Nw(1), Nw(2),...,
Nw(Np)) is cdled the memory write pattern.

Intuitively, a MAP for a given pair of PF and Il can be
represented as aredange with NpxIl cdls. Eadh cdl islabeled
with R for reading, W for writing, or | for idling. A row of
cdls dands for memory acceses of one memory port, and a
column of cdls gands for the memory acceses in one
particular clock cycle. For example, when PF=2, Il=4, and
Nyp=4, there exist many MAPs. One of them is shown below,
which uses two memory ports (Np=2). For this MAP, the
memory read pattern is (3,2) and the memory write pattern is
(1,2).

/I\R R R|W
Ne

VIR | R| W]
I

The GTM operation involves intensive memory accesses
when image is gored dff-chip. At ead pixel locaion, the
window function consumes Npp image pixel values. The GTM
FPGA designs that use different MAPs tend to have significant
differences in performance ad hardware resource
requirements. Both the FPGA buffer and the unit function
design can be derived based on a MAP (seethe next sedion).
Therefore, the MAP enumeration is a systematic way to
enumerate region functions. However, not all MAPs can lead
to auseful region function.

A MAP can be evaluated with the following four quality

measures. The first is the number of image line buffers (N,)
required by a MAP. When the total number of memory reads
NRr by the MAP is lessthan the number of rows of the template
window (Rwin), NL = Rwin - Ng. Larger N requires more
FPGA area for the buffer. The secmnd is the number of
memory port (Np). Larger Np means more memory banks and
more FPGA input/output pins. The third is the initiation
interval (I). Larger Il correspondsto alower throughput of the
unit function. The last measure is the memory size requirement
(Sv). Lager Sy requires more memory space

Definition: For two MAPs A and B with the same pading
fador, A dominatesB if A'SN. < B’sSN;,A’sNp< B’SNp, A’S
Su<B'sSy,andA’sll <B’slI.

Therefore, if MAP A dominates MAP B, then the region
function corresponding to A is most likely better than the
region function corresponding to B. Hence, a dominated MAP
can be safely discarded. A MAP not dominated by any other
MAPsis cdled a hon-dominated MAP.

Note that non-dominated MAPs are only a very small
fradion of al MAPs. Algorithms to prune the MAP design
space (remove dominated MAPs without enumeration) and to
obtain al non-dominated MAPs were developed by the
authors of this paper. Their effedivenesswas detailed in [28]
where it was down that, when the pruning was applied to a
particular case (four memory ports and ead memory location
storing four pixels), 72 MAPs which were lessthan 2% of the
MAP spacesurvive for a small problem (a 3x3 template with 9
adive points) and 346 MAPs which were less than 0.2%
remain for a bigger problem (a 15x15 template with 30 adive
points).

D. Sep 2: Region Function Generation

A region function consists of two perts, a unit function and
an FPGA buffer. Sedion 1 describes the unit function mapping
processand the unit function area etimate. Sedion 2 presents
the FPGA buffer generation and its area etimation

1) Unit Function Mapping and Area Estimate

The inputs for the unit function mapping include FPGA
board information, FPGA library components, a DFG of
window function, and aMAP including PF and II. A scheduled
DFG and a resource table that summarizes the usage of
hardware resources are produced after scheduling and hinding.
They can be mnverted into a datapath and a cntrol table
based on which the unit function areais computed.

The problem of the unit function mapping is closely related
to the well-studied high-level synthesis (HLS) [29-32].
Automated approaches to the fundamental HLS problem
consist of two related constrained opimizaion problems:
temporal scheduling and spatial binding. HL S techniques have
been widely applied to the compiler (or synthesis tool) designs
on rewmnfigurable systems. The COBRA-ABS highlevel
synthesis gystem [8] performs globally optimizing high-level
synthesis using simulated anneding, integrating all
partitioning, scheduling, binding, and all ocation operations in
one optimization step.
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The objedive of the unit function mapping in this paper is
to minimize the unit function area under constraints of an
initiation interval (1), a padking fador (PF), and latency. The
approach in the unit function mapping, unlike that in [8], isto
perform the scheduling and the resource binding separately.
The unit function mapping consists of five sequential tasks:

e Task 1: Schedule one DFG to determine the latency that is
used in Task 2.

e Task 2: Schedule PF copies of the DFGs together using a
li st-scheduli ng algorithm.

e Task 3: Perform the operator sharing and binding.

e Task 4: Generate the datapath and the controller.

e Task 5: Estimate the unit function area

Eadh task is described as foll ows.

Task 2: List-Scheduling with PF DEGs: The scheduling
problem in the unit function mapping is to oltain a modulo
schedule of afunctional pipeline that all ows operator resources
with pipelined implementations. The schedule minimizes the
arearequirement subjed to latency and Il constraints. In order
to reduce the complexity of the scheduling problem, a list-
scheduling algorithm (heuristic) is used. It is based on a
similar algorithm for the functional pipeline schedulingin [31]
where eat operator resource is asaumed to be non-pipelined.
The mputation of resource lower bounds is modified
acordingly.

The initial upper bound of resource instances for ead
resource type in the list-scheduling algorithm [31] is one. A
new heuristic on a suitable initial upper bound is used in the
unit function mapping. The initial upper bound are defined by
the new heuristic as follows. Based on the initial scheduling
information from Task 1, for ead required resource type,
compute the first control step Ts that an operation of this type
is gheduled, and then count the number Nop of operations of
this type that are scheduled at the time interval from Ts+1 to
TsHI. The initial upper bound of this type of resource
instances is defined as [N /11 [. Setting the initial upper

bounds to be ones may not leal to a scheduling result as good
as the new heuristic. A comparison of the two methods can be
found in[26].

Task 3: Operator Sharing and Binding: Once the DFG
(adually PF copies of the original DFG) is sheduled and the
start time of ead node v; is denoted by t, i=1, 2, ..., n, two
operations v; and v; with the same resource type exeauting at

t. =k, +p, 01, wherel< k, < Il for somep, ,and
t, =k; + p; I, wherel<k; < Il for somep;.
can share the resource instance if and only if k; #k;. This

condition is easy to ched. In the aurrent implementation, the
hardware sharing is always sleded whenever the aove
condition holds. That means, the aea @st of multiplexers is
assumed to be less than that of the hardware being shared
(which may not be true for simple operators). It is aso
assumed that one operator can have only one resource type
that implementsit. Task 3 produces aresourcetable acording
to the scheduled DFG.

Task 4: Datapath and Controller Generation: The
datapath generation involves the insertion of registers and
multiplexers and the interconnedions of components. The
controller generation isto produce a ontrol table that controls
registers and multi plexers to stee data flows in the datapath.
The inputs to the datapath and controller generation are the
scheduled DFG and the crresponding resource table. The
tasks involved include:

1. Building ports: When no FPGA buffer is used, some pixel
nodes neal to be merged to share memory ports acording
to the MAP.

2. Adding delay registers: The data @ming from the FPGA
buffer or the memory ports are aaumed to be valid for
only one dock cycle. If an image pixel value is available
at the time step n and is consumed at the time step m, then
m-n registers are needed to delay the datum. Note that
when the FPGA buffer strategy is used, nis 1; otherwise n
is the data arival time. Also, becaise the output of an
operator is valid for 1l clock cycles, if the output is not
consumed after 1l clock cycles, delaying registers are
needed.

3. Adding rode registers: They hold the computation results
of nodes.

4. Adding multi plexers when multiple nodes sare the same
resource instance. Note that when the pixel nodes are
grouped, the inputs to some operators are dso grouped
acordingy. Thus the number of inputs to the
corresponding multi plexer can be reduced.

5. Generating the datapath in a net list format and the cntrol
table acording to the previous results.

Task 5: Unit Function Area Computation

The unit function area ca be mmputed based on the
datapath and the control table & follows. Note that the FPGA
routing areais not considered.

1. For the datapath areg the task is graightforward becaise
every component in the datapath is from the FPGA
component library and has its area spedfied. So simply
summing Y these mmponent aress is enough Note that
when the library component is implemented in VHDL
with generic parameters, formula of cdculating the aeas
acording to the parameters are ssauimed to be available.
Because the CLBs in pradice may be shared by different
library components, the datapath areais overestimated in
our approadh.

2. For the controller area atimate, the task is more
complicaed. The cntroller is to control the datapath to
compute through a pipelined loop. It goes through three
phases, which are prologue, steady state and epil ogue.
Asame that (1) the lengths (clock cycles) of prologue,
steady state and epilogue ae n;, n,, and n; respedively,
(2) the number of iterations throughthe steady state phase
is n, and (3) one-hot encoding is used in the cntroller
state encoding. Then at least ny+n,+ns+og,(n) Ofli p-flops
or ((ny+ny+ng+ iog,(n)J/2 CLBs) are neaded for the state
encoding and transitions, where n;+n,+n; flip-flops are
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used for the state encoding and log,(n) flip-flops are used
for a counter. Control signas of the controller include
register enable signals and multiplexer seledion signals.
Their area etimates can be found in [26].

2) FPGA Buffer Generation and Buffer Area Estimate

Given aMAP, Nap, and sizes of image regions and template
window, the FPGA buffer can be generated as follows. In
order to reduce the initial buffer filling time, the number of
line buffers for memory port p, Nig(p) (1<p<Np), can be
computed by the minmax decompasition of Ryn-Ng with
resped to Np. That is, NLB(1)+---+ NLB(NP): Rwin-Ngr and the
maximum values of Nig(1),...,N.g(Np) is minimized. For
example, {3, 2, 2} is the minmax decomposition of 7 with
resped to 3. Then, when Ng = Nap and PF>1, ead of the Np
memory ports corresponds to an internal buffer; when 1 < Ny
< Rwn, the buffer type for eadcr memory port can be
determined as foll ows.

Buffer Type Condition

Partial N s(p)=0
Full Nr(p)=1, N g(p)#0
Hybrid Nr(p)>1, N g(p)Z0

After the buffer structure is determined, the template
window can be partitioned acordingy. Eac partition (several
conseautive rows of the original template window)
corresponds to one of the four types of basic FPGA buffers—
Internal Buffer, Full Buffer, Partial Buffer, and Hybrid Buffer.
An entire FPGA buffer can then be generated by combining
those buffers and seledors, if neaded. An FPGA buffer for
eat memory port can be built in a component hierarchy. For
example, a full buffer consists of FIFOs (for line buffers) and
shift registers (with parallel outputs for pixels at the template
window), and a FIFO is compased of adual port RAM and an
address controller, and so on. The sizes of buffer components
can also be ommputed acording to the buffer parameters.

A bottom-up approach is used in estimating the FPGA
buffer area The aeaof eat base cmponent of the buffer is
computed first, and then the aeaof a higher layer component
is obtained by adding y areas of al its components. The
following gves ome examples of buffer component area
computation.

Area o Dual Port RAM: Asaume that the depth and the
width of the dual port RAM are n and w, respedively. When
the LUT in a CLB is used for the RAM implementation, the
number of CLBs is wx[1/16[] When the dedicated BlockRAM
is used, asume that Wg is the smallest value of BlockRAM
data width that is not less than w, then the number of
BlockRAMS is [/(Ngraw/We) ) Where Nggay iS the number of
bits per BlockRAM.

Area of Shift Register (with parallel outputs): Assuume
that the depth and the width of the shift register are n and w
respedively. The number of CLBs for this dift register is
(hxw/2[]

Area of FIFO: The FIFO consists of two parts—Dual Port
RAM and Address Control. Asuume that the depth and the

width of a FIFO are n and w, respedively. The control part
consists of two counters with enable and reset. The two
counters use 2x[log,(n)Oflip-flops, and thus og,(n)JCLBS.
Then the total areais the sum of both components.

Area o Full Buffer with Packing: The full buffer with
padking consists of FIFOs with equal size and shift registers
with equal size In order to compute the aea the numbers of
FIFOs and shift registers, the lengths of the FIFO and the shift
register are needed. The full buffer with padking hes the
foll owing parameters: the number of columns on image region
(Cima), the number of rows on template window (Ryy), the
number of columns on template window (Cwiv), the padking
fador (PF), and the number of bits on image pixel (Ngts)-

The number of shift registers is RynxPF. The number of
FIFOs is (Rwin-1)xPF. Let Lreg be the length of the shift
register and Lo be the length of the FIFO. Then

+ -
_ [y *PF-10

Lrec = 0 pF 0

For example, when PF=1, Cyc=80, and Cyn=4, then
LREG:4 and L|:||:o:79. When PF:2, CIMG:801 and CWIN:41 then
Lrec=3 and Laro=39. It is assumed that Cive is divisible by
PF. Then the full buffer areais the sum of areas of FIFOs and
aress of shift registers. Note that when PF=1, the computed
areais for the full buffer without padking. The aea atimates
for other types of buffers can be obtained similarly (see[26]
for detail ).

Lero = Cive /PF -1.

E. Sep 3: Region Function Selection and Binding

In the region function seledion and hinding process a set of
region functions is sleded for eathh FPGA chip and eadh
region function is asdgned particular memory ports, templates,
and processng regions (conseautive rows of an image region).
The process therefore includes the FPGA chip hinding, the
memory port binding, the image region partitioning and the
processng region binding, and the template binding. For an
FPGA chip, i (1<i<Ngpsa), the region functions RF;, 1 < j <
q(i), together form the chip design, which has to satisfy an
FPGA area onsraint and a memory port constraint. As a
result, for the FPGA chip hinding and the memory port
binding, the cmbinatorial optimization problem can be
formulated as foll ows.

CTo minimize

0 max{Time(RF, ) | 1< € Npgs, andLs j < (i)}
%ubject to

B O Area(RF, ;) < AreaConstrant, 1<i < Nepgy
O <j<p\q(i)

E géﬁq(fort(RFi'j)s Nyp, 1<i < Nepea

In the aove formulation, the objedive function isthe GTM
computation time, Nepsa iS the number of FPGA chips on the
target board, and Nyp is the number of memory ports
conneded to eac FPGA chip. Time(RF;;) stands for the RF;;
exeattion time, AregRF;) for the RF; FPGA area and
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Port(RF;;) for the RF;; memory ports. The exeaution time of
the GTM design is the maximum exeaution time of all RF;;
exeadtion times because dl RF;; work independently and in
parallel. Note that Time(RF;;) cannot be obtained before the
processng region binding and the template binding.

Asaume there ae r image regions, IR (1<s<r), for a GTM
operation and there ae rs templates, T, (1<b<ry), in eath
image region IR, Assume that the number of rows of ead IRy
is d.. A partition of IRs is a set of digoint subsets, PRg;
(1st<psds), of IR, eat with dy; conseautive rows of the
image, that satisfy

Ps
Z d,, =d,.

To solve the aove region function seledion and binding
problem, an efficient algorithm was developed with the
assumption that region functions have the same dock rate.
Due to the spacelimitation, only the dgorithm outline is given
here (refer to [26] for detail s).

1. The problem can be smplified to the cae of a singe
FPGA chip by using the same set of region functions for
different FPGAs.

The problem can be further smplified by decoupling the
memory port binding from the image region partitioning
and processng region binding. When the memory port
binding problem is lved, the image region partitioning
and processng region bindingis graightforward.

The memory port binding problem can be decoupled into
two problems, a generalized knapsadk problem and a
generali zed integer partition problem. Either problem can
be solved efficiently.

IV. EXPERIMENTAL RESULTSAND ANALYSIS

In this dion, several experiments are performed to lean
the mapping results under different constraints, and to compare
the mapping results of different restricted GTM cases.

A. Mapping Results

In this experiment, Example 1 in Sedion Il is used to
illustrate the mapping results. It is assumed that Ngpga=1,
Nmp=1, Weorr =16, Bpata=8, Nmw=1, Rwin=3, Cwin=4,
Cime=320, Rnme=200 and Nap=9. In this mple example, the
FPGA board has only one FPGA chip that is conneded to only
one memory port. So the FPGA chip can contain only one
region function and thus the whole GTM design consists of
only one region function. There ae totaly eight non-
dominated MAPs and thus eight candidate region functions as
shown in Table 4. If the FPGA chip has 500 CLBs, then the
fourth region function is the fastest solution that needs 160,000
clock cyclesto compute.

For the WildForce FPGA board [33], which can be
conneded with a host computer such as a PC via the PCI bus
of the host computer, there ae five FPGA chips, ead with one
memory port conneded, ead memory word is 32 hits wide,
and eadhh FPGA has 3,136 CLBs. In this case, Ngpga=b,

CLOCK CYCLE

10

Nup=1, Wport =32, Srpea=3136 and the GTM mapping toadl
produces a region function (PF=4 and I1=5) with an area of
1236 that works on the five FPGA chips in paralel. The
computation time is 16,000 clock cycles. It can be observed
that each FPGA chip still has extra aeabut the region function
is the fastest design (the todl can produce) arealy. For this
small example, if there were more memory ports, then a bigger
region function with more mpies of the window function
and/or multiple region functions could be acommodated and
further speedup could be obtained. Assume that eadh FPGA
chip has 4 memory ports instead, i.e. Nyp=4. Then the GTM
mapping tod produces 43 candidate region function designs
and hinds two region functions to ead FPGA chip, one with
an areaof 1,236 (PF=4, I1=5 and Nr=1), and the other with an
areaof 982 (PF=4, I1=2 and Np=3). The mmputation time is
4,800 clock cycles. The speedup is about 3.3 compared with
the single memory port case. If the FPGA CLB count were
larger than 4,994 (=1,236x4), then the GTM mapping tool
would have seleded four copies of the fastest region function
designin eat FPGA and oltained a speedup of four.

TABLE 2: ALL CANDIDATE REGION FUNCTION DESIGNS

P | I | Non- Buffer Type Area (CLB Cycle
F Dominated Counts)
MAP Buff | UF | RF
2| 3 | RWW Full/Packing 568 | 244 | 812 96000
2 | 4 | RRWW Hybrid/Packing | 394 | 232 | 626 | 128000
1] 2 [ RW Full 458 | 100 | 558 | 128000
2 | 5 | RRRWW | Patia/Packing | 216 | 240 | 456 | 160000
1| 3 | RRW Hybrid 291 | 112 | 403 | 192000
1| 4 | RRRW Partial 120 | 116 | 236 | 256000
2 | 11 | RRRRRR | Interna 32| 220 | 252 | 352000
RRRWVW
1 | 10 | RRRRRR | No Buffer 0| 110 110 640000
RRRW
B. Mapping Results Under Different Constraints

Several experiments are performed to show how the
mapping results change when the FPGA board parameters
change. They include CLB counts, the number of the memory
ports, and the width of the memory data port.

300000 ~

250000 -

(Nmp=4)
(Nmp=3)
(Nvp=2)
(Nmp=1)

200000 ~

150000 ~

100000 -

50000

Sebensssrr e e

FPGA CLB COUNT (From 300 to 5300 in Every 100)

Fig. 7: Mapping Results of Different Memory Port Numbers (WPORT =32)
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Again Example 1 in Sedion Il is used. It is asumed that
Nerca=1, Weorr =32, Bpata=8, Numw=1, Rwin=3, Cwin=4,
Cime=320 Rus=200, and Nap=9. Fig. 7 shows the number of
clock cycles of the GTM mapping results. The FPGA CLB
court is in the range from 300 to 5300 As the CLB court
increases, initially the computation time of the mapping results
for the one memory port case is reduced rapidly. But when the
FPGA CLB count is over 1,300, the computation time stays
congtant. That means increasing the FPGA size further does
not help any more. Such an FPGA CLB court is cdled the
criticd CLB number. For the two-memory port case, the
criticd CLB number is 2,100. For the threememory port case,
the aiticd CLB number is 3,600 For the four-memory port
case, the aiticad CLB number is 5,000 It can be seen from
Fig. 7 that the speadup of using two memory ports compared
with using one port is roughHy 2 when the FPGA is large
enough Also at some points, adding more memory ports leads
to only margina speedup. Similar results can be ohserved
when data port isequal to 16 ¢ 8 hitswide.

Fig. 8 compares the mapping results of different memory
data port widths. When the FPGA CLB courts are large, the
GTM mapping tod aways produces a faster GTM design
given a wider memory data port. But the speedup is lessthan
the ratio of the incresse in memory data port widths. This is
becaise dthoughawider memory data port all ows the pacing
of more window function copies in a unit function, the pading
strategy increases the number of memory writes as well and
thus increases the minimal 11.  On the other hand, when the
FPGA CLB courts are small, increasing the width of memory
data ports may not lead to speed increase. Similar results can
be obtained when the number of portsisequal to 3, 2, or 1.

70000

60000

—— (32Bity)
—= (16Bits)
— (8Bits)

50000 -

40000

CLOCK CYCLE

30000 -

20000 -

10000 -
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Fig. 8: Mapping Results of Different Memory Data Port Widths (Nwp=4)

C. Mapping Results Under Different Restricted Cases

Human designers often impase some restrictions in their
FPGA designs to simplify the design tasks, hoping there is not
much saaificing in the design optimality. The experiments
here try to provide some eplanations to such human
designers dedsions. Table 3 lists three types of design

11

restrictions. In the experiments, Example 1 in Sedion Il is
used. It is asuumed that Nepea=1, Wport =32, Bpata=8,
Nww=1, Rwin=3, Cwin=4, Cimc=320, Rimc=200, and Nap=9.

TABLE 3: RESTRICTIONSON GTM MAPRANG PROBLEM

Design Restriction

Region Function | With orly one region function

With the same region functions

Unit Function With orly one memory port

AIWIN|F

With orly one memory port or
With multi ple memory ports, but ead
exclusively for reading or writing

5 | Buffer Withou hybrid bufer

6 Withou pading

7 With orly one memory port

Fig. 9 shows the number of clock cycles of the GTM
mapping results under various restrictions on region function
and unit function when the FPGA CLB cournt is from 800 to
5300

90000

No Restriction or Restriction 4

80000 1

Restriction 2

70000

60000 { —A Restriction 1

50000 -

Restriction 3
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40000 1

BeAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

30000

20000

10000

FPGA CLB COUNT (From 800 to 5300 in Every 100)

Fig. 9: Mapping Results Under Restrictions on Region Function or Unit
Function

Note that the results corresponding to no restriction and
Restriction 4 are identicd. This means that, for this example,
the mapping results is not degraded by limiting the unit
function design to one memory port or to multiple memory
ports where ead is exclusively used in reads or writes. The
mapping results with Restriction 2 have the same exeaution
times (clock cycles) as those without restrictions when FPGA
CLB counts are very small (Ilessthan 900) or very large (larger
than 4,600, but are alittle slower otherwise. The mapping
results with Restriction 1 have the same exeaution times (clock
cycles) as those without restrictions when FPGA CLB counts
are very small (lessthan 900), but are slower otherwise. The
mapping results with Restriction 3 have dmost the same
exeadtion times (clock cycles) as those without restrictions
when FPGA CLB courts are large (greder than 3,700), but are
very sow when FPGA CLB counts are small (lessthan 1,700).

It can be oncluded that when FPGA CLB courts are
relatively large (larger than 3,700 for this example),
Restrictions 2, 3, and 4 donot degrade the quality of the GTM
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design. In this case, human designers may choose the
congtraints corresponding to Restrictions 2 and 3. Limiting
unit function design to one memory port reduces many unit
function design options. Limiting FPGA chip design to the
same region functions reduces the cmplexity of region
function seledion and binding to alinea complexity.
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Fig. 10: Mapping Results Under Restrictions on FPGA Buffer

For the same example, Fig. 10 shows the number of clock
cycles of the GTM mapping results under the restrictions on
the FPGA buffer when the FPGA CLB court is from 500 to
5,300 It can be seen that the pading strategy (Restriction 6)
affeds the optimality of the mapping results very much.
Therefore, the buffering with padking strategy is valuable for
the speedup of GTM operations. When FPGA areais not too
small (lessthan 800 CLBs), the buffer with one memory port
(Restriction 7) corresponds to the same mapping result as
those without restrictions. Without hybrid buffer (Restriction
5), the mapping result is not as good as that without the
restriction when FPGA CLB counts are in a range from 3,400
to 4,000. Note that the hybrid buffer could affed the optimal
mapping result more if the template window had more rows.

Note that the availability of the mapping toadl enables the
evaluation of board parameters with resped to a GTM
applicaion requirement. It provides useful information when
a user is trying to devise an “optimal” structure of FPGA
board, such as the number of FPGA chips, the number of
external memory ports, the memory word width, and the size
of FPGA, for a given performance requirement of a GTM
operation. How to derive an optimal structure systematicaly
isan interestingisae.

V. CONCLUSIONSAND FUTURE WORKS

The GTM operations cover a useful set of image processng
algorithms, and their speedup by using reconfigurable
computers has been shown in many research papers. However,
the human design process for GTM operations is usualy
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tedious even without exploring the whole design space ad the
compil er-like software toadls for reconfigurable computing are
far from efficient. Therefore, it is quite desirable to map this
type of applicaions onto reoonfigurable @mputers
automaticdly with some degreeof design space aploration.

In this reseach, the GTM operations are charaderized and
formulated as a spedal nested loop computation. GTM
parallelism is explored by pipelining and by applying multiple
copies of hardware units, such as multiple window functionsin
aunit function and multi ple region functions in an FPGA chip.
Various FPGA buffers are presented which provide design
options for the tradeoff among the FPGA computation time,
the FPGA areg and the memory size requirement. The design
options also exist in circuit synthesis, FPGA chip and memory
port binding, and image region partitioning and binding. The
overall solution strategy is to enumerate the design space of
basic pipelined FPGA design urits and then seled an optimal
combination from these basic FPGA design units.

The enumeration process of the FPGA buffers and the
computation cores is performed through the memory access
pattern enumeration. Effedive pruning algorithms are aeaed
to oltain all the non-dominated memory access patterns. Then
the FPGA buffer is generated acmrding to the memory access
pattern, and the datapath and controller of the pipelined
computation core drcuit is obtained through the high-level
synthesis under the @nstraints of the memory access pattern.
Finaly an optimal combination from basic design urits is
seleded by a cmmbinatorial optimization process of FPGA
chip and memory port binding, and image region partitioning
and hinding.

The GTM mapping procedures and algorithms developed in
this work are the basis of an automatic GTM software design
tool that can produce anea optimal design, bocst designers
productivity, and improve design portability. The airrent
design tod can produce VHDL codes for the mapping results
targeting the Wil dForce FPGA board.

The GTM mapping on reconfigurable computers involves a
wide range of research topics. Many assumptions were made
so as to limit the scope of the reseach. Relaxing some of these
assumptions will certainly enlarge the gplicaion range of the
mapping methoddogy. Several limitations and passble future
works are listed in the foll owing.

1. The FPGA design area etimates dould be improved.
Currently routing areas are not considered at all. Further study
is neaded. In our current mapping tod, an FPGA area
utili zation ratio is used to overcome the inacarate aea
estimate. After FPGA placement and routing, if the design
does not fit, the utili zation ratio is reduced so as to force the
tool to produce asmaller design. The processis iterated until
asmall enoughdesignis found.

2. The dock frequency of a design should be cmnsidered in
the optimization process Two technicd isaues are involved.
(1) How to acarately estimate the dock frequency without
going through placement and routing? (2) How to modify the
optimization process to incorporate the frequency estimates?
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Because the problem domain is limited to GTM, there is a
chance to come out with rules of thumbs about frequency
estimates.

3. Hardware sharing overhead needs to be mnsidered in
terms of (multiplexer) area and design clock frequency. In the
current implementation, hardware sharing is always performed
whenever passble, even when the shared hardware has less
area ©st than that of the alded multiplexers. A potential
solution is to ched the aeaoverhead and add a clock cycle
time onstraint. Since routing delays can be expeded to be a
problem for the time constraint, further study is needed.

4. The pipeline synthesis of the unit function currently is
performed in a very limited way. It should be enhanced in the
following aspeds. First, the assumption that ead operator in a
dataflow graph has only one implementation should be
removed. This will add another dimension to the design space
and make the synthesis much more complicaed. Second, the
register sharing is not considered in the aurrent synthesis
algorithm. Third, the nventional compiler optimizaion
techniques for a dataflow graph, such as constant folding,
operator reduction, etc, are not considered. When the
templates are fixed, the constant folding task is expeded to be
performed by the users through providing a simplified DFG.

There ae many other limitations in the airrent
implementation of the GTM mapping todl. For example, the
window function is required to be template permutation-
invariant. The template permutation is to change the ordering
of pairs of the template weight and the image value & the same
template locaions. A window function is sid to be template
permutation-invariant if any template permutation does not
change the value of the window function. In Example 1 in
Sedion Il atemplate permutation is to change the ordering of
the nine pixels. Since it does not change the sum, the
summation (the window function) is template permutation-
invariant. This property comesinto play when examining ron-
buffering cases. In these caes, the pixel nodes are grouped
and are ordered in ead group. There is a nead to compute the
locaions of image pixels at al adive points when the memory
controller read the image data. With the template permutation-
invariant property the memory controller can real image pixels
at al adive pointsin any order as long as using the same order
as the template weights. This limitation simplifies the
implementation of the memory controller, and can be fixed
without difficulty.
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