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Abstract—Image processing algor ithms for template matching, 

2D digital fil tering, morphologic operations, and motion 
estimation share some common properties. They can all benefit 
from using reconfigurable computers that use co-processor 
boards based on FPGA (field programmable gate arr ay) chips.  
This paper characterizes those applications as generalized 
template matching (GTM) operations and describes the mapping 
of the GTM operations onto reconfigurable computers.  A three-
step approach is described.  The first two steps enumerate and 
prune the design space of basic GTM building blocks, which 
consist of FPGA buffers and GTM computation cores. The last 
step is to achieve a solution through an optimal combination of 
these building blocks where the cost function is the FPGA 
computation time and the constraints are FPGA co-processor 
board resources. Var ious FPGA buffers are presented so as to 
introduce design options of basic GTM building blocks. 
Algor ithms used for the mapping are described. Experimental 
results are summarized to reveal the relationship between the 
GTM mapping results and FPGA board resource parameters. 
 

Index Terms—FPGA, Reconfigurable Computing, Image 
Analysis, High-Level Synthesis, Template Matching 
 

I. INTRODUCTION 

econfigurable computers can offer significant 
performance advantages over conventional processors as 

they can be tailored to the particular computational needs of a 
given application. The technology has been demonstrated for 
the acceleration of various applications such as automatic 
target recognition (ATR) [1]-[3], image processing [4], 
machine vision [5], and morphology operation [6]. However, 
the programming of reconfigurable computers is extremely 
cumbersome, demanding that software developers also assume 
the role of hardware designers. Thus, one key to unlocking the 
full potential of these systems is developing truly automatic 
mapping tools. Motivated by such a need, this paper focuses 
on the mapping of generalized template matching (GTM) onto 
reconfigurable computers to help designers explore the design 
space and get a near optimal GTM design. 
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The reconfigurable computer addressed in the paper is a 
host computer with a co-processor board based on field 
programmable gate arrays (FPGAs).  The target FPGA board 
may contain multiple FPGA chips, each with an array of 
homogeneous memory banks.  Fig. 1 shows such a board 
structure where the dotted line and box are optional. The host 
may access an on-board memory either directly or through the 
FPGA chip. The host may also access the FPGA through a 
FIFO (or a Xbar). 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Target Board Architecture 

 

In Fig. 1, there are n memory banks for each FPGA chip.  
Although a memory bank may be double-ported so as to allow 
concurrent access of the host and the FPGA chip, each 
memory bank is considered as single-ported as far as the 
mapping process is concerned.  So the words “memory bank” 
and “memory port” are used interchangeably in the paper. All 
memory banks have the same sizes in terms of storage capacity 
and port width. All FPGA chips on the board have the same 
structure and there is no direct connection between them.  
Copies of the same image frame may be stored in different 
memory banks to facilit ate the evaluation of multiple 
templates.  One image frame may be distributed among 
memory banks, sometimes with overlapping, to enable parallel 
evaluation of a single template.  The host machine is 
responsible for the distribution of image frames to memory 
banks. 

The generalized template matching (GTM) operations 
proposed in the paper include image processing algorithms for 
2D digital filtering, morphologic operations, motion 
estimation, template matching and so on. They all i nvolve 
moving a "window" (or template) pixel by pixel in a scanned 
line order. The GTM operations are similar to the  "Sliding 
Window-Based Operations'' (SWO) as in [7]. However, the 
GTM is more general in that all the pixels (or samples) in a 
SWO window are involved in the window computation while 
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in GTM the template in a window may be quite "sparse'' and 
only a low percentage of pixels in a window is involved. 

The overall approach of building the GTM design contains 
three steps. The first two steps enumerate, evaluate, and list 
enough number of basic GTM building blocks, called region 
functions.  Each region function contains an FPGA buffer and 
a pipelined functional unit, called a unit function, which 
evaluates the window computation at one or more consecutive 
pixel locations. Different region functions have different 
throughputs, occupy different FPGA areas, and require 
different numbers of memory ports.  The third step is to bind 
one or more region functions to each FPGA chip so that the 
total execution time is minimal under the FPGA board 
resource constraints such as the number of FPGA chips, the 
size of FPGA chips, the number of memory ports, and the 
width of memory ports. Region functions on all FPGA chips 
work independently and in parallel on different image regions 
and/or, if any, different templates under the control of a host 
program. 

 Related Research Works   There have been many research 
projects on design environments for reconfigurable systems. 
They include COBRA-ABS high-level synthesis system [8], 
PECompiler [9], SPLASH Environment [10], RAW Machines 
[11], Napa-C compiler [12,13], Rapid (Rapid-C) [14, 15], 
GARP Compiler [16], DEFACTO [17], and Single 
Assignment C [18]. These system tools are usually aimed to 
support more general applications than the GTM operations 
and targeted to their particular architectures. Therefore it is 
diff icult for them to explore the parallelism inherent in the 
GTM operations. In contrast, the various levels of parallelism 
of GTM operations can be explored systematically by the 
proposed mapping methodology. In addition, the GTM 
mapping is not geared to particular hardware components such 
as the dynamic control in the Rapid structure.  

Brilli ant FPGA designs have previously been proposed for 
some particular GTM applications, including automated target 
recognition (ATR) and 2-D convolution. These designs 
provide a clue for us to attack the GTM mapping problem 
systematically, although the design optimization with respect 
to the change of FPGA resource parameters is usually not 
considered in these individual designs. 

Very different mapping strategies are used in [2] and [3] 
even though they are for the acceleration of the same ATR 
algorithm which requires correlating a huge number of 
predefined binary templates to the image area of interest. The 
researchers at UCLA use very compact adder trees that take 
advantage of template sparseness and FPGA lookup-table 
memory capabilit y [2]. Their approach maps template 
information directly into the hardware and relies on fast 
reconfiguration to switch template information. They also take 
advantage of template overlap by computing the results of 
multiple correlations simultaneously. In contrast with this 
method, the researchers at BYU use statically configured 
hardware and memory-stored templates [3]. The technique 
computes the correlations column by column, and sums up the 

partial sums for all columns of template. In this method all 
column correlations are computed in parallel but only one 
column of data needs to be available for processing. This type 
of buffering is called partial buffering in [19].   

The 2-D convolution is an essential image-processing 
function. The authors of [20] discuss several architectural 
solutions to a convolver design. The architecture for a 
complete 3×3 convolver includes shift registers for pixel 
values contained in delay lines and for the 3×3 convolution 
window. Because of these shift registers, the convolution can 
be carried out one pixel location each clock period. This type 
of buffering is called full buffering in [19]. Note that an 
alternative implementation of delay lines is to use the 
Configurable Logic Block (CLB) RAMs or Block RAMs 
inside Xili nx FPGAs. 

One technique used in parallel compilers is closely related 
to the research. It is the software pipelining (or modulo 
scheduling) [21]-[23] that allows overlapping execution of 
consecutive loop iterations, with one fixed schedule for the 
loop body. In the paper, this technique is employed for the 
mapping of the GTM operations that can be characterized as 
nested loop computations. 

Since for many applications the throughput of the 
reconfigurable coprocessor is limited by external memory 
accesses, it is very important to speed up the memory access 
by buffering frequently used data on-chip and scheduling as 
many external memory accesses in parallel as possible. The 
problem of buffering image data has been well studied [3], 
[20], [24], and [25]. In [24], [25] efforts were devoted to 
identifying data buffers for a nested loop from a compiler’s 
perspective.  Because their problem domain of nested loops is 
more general and therefore more diff icult to handle than GTM, 
no effort was attempted in [24], [25] to optimize the buffer 
design under constraints of available resources. One way to 
schedule as many external memory accesses as possible in 
parallel is to distribute arrays over several memory banks. The 
paper in [24] formulates the array allocation problem as an 
Integer Linear Programming problem. In the formulation, one 
array is restricted to be allocated on one memory bank. This 
may eliminate the chance in which the parallelism could be 
achieved by using multiple memory banks for one array such 
as an image. The Napa-C compiler [13] also demands the same 
restriction. In our approach, one image array can be 
overlapped and distributed over several memory banks. 

In [6] a two-level compilation scheme generates high-speed 
binary morphology pipelines that can handle a sequence of 
morphology templates described in a script file. The binary 
templates are all of size 3×3 and individual operations can be 
implemented with the same hardware circuit, called a 
supercell , that contains a full buffer and a 256-bit look-up 
table (8-bit input and 1-bit output). The first-level compiler, 
used only once given an FPGA board, generates a set of 
supercells with fixed connections that will fit in the FPGA 
chips. The second-level compiler can customize the look-up 
tables depending on the script file contents. The approach has 
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many advantages. One of them is very high compilation speed 
because application users only need to use the second-level 
compiler that takes seconds each time. The approach may not 
be feasible for more complicated templates. For example, it is 
not practical to use a single look-up table for a 3×3 
convolution window on 8-bit pixels. 

The paper is organized as follows. Section II describes the 
GTM mapping problem. Section III presents the mapping 
methodology. Section IV gives experimental results. Section V 
concludes the paper. 

 

II . GTM MAPPING PROBLEM 

In the following, the GTM terminology and some basic 
assumptions are given in Section A. The GTM mapping 
problem and various design options are described in Section B. 

A. GTM Terminology 

The following example in C language syntax is used 
throughout the paper.  

Example 1: 
 
 
 
 
 
 
The active points in a template include all the points 

necessary for the template computation. A template is usually 
specified with, for each active point, the active point location, 
which denotes the offset of the active point in the template, 
and the active point value, which denotes the "weight" 
associated with the active point. In Example 1 the number of 
active points is nine, and the active point locations are (0,0), 
(0,1), (0,3), (1,0), (1,1), (1,2), (2,0), (2,2) and (2,3), and the 
active point values are all ones. 

The loop body that is iterated pixel by pixel through an 
image is called a window function. A window function is 
evaluated by applying one template at one pixel location at one 
time. In Example 1 the window function is the summation of 
nine image pixels at active points. A GTM operation is the 
application of a window function to an image frame. The 
image frame may be partitioned into several image regions IRi 
(i=1,2,..,n), each being a set of consecutive image rows. For 
the evaluation of a window function in each IRi, there is a set 
of templates { Ti,1, Ti,2, …, Ti,m(i)} . Different image regions may 
associate with different sets of templates. A GTM operation 
thus can be formulated as the following nested loop 
computation. 

For all i Å1 to n                                 //all image regions 
      For all jÅ1 to m(i)                        //all templates  
            For all pixel P in IRi                        //all pixels  
                  Window-Function (P, Ti,j) 
From this formulation, the GTM operations may possess 

two levels of parallelism. First, for the evaluation of a window 

function different templates can be applied in parallel. This is 
called template-level parallelism. Second, the evaluation of a 
window function can be carried out in parallel at several pixel 
locations. This is called pixel-level parallelism. Some further 
assumptions about the GTM operations and FPGA designs are 
given below in order to narrow down the scope of the paper. 
Assumptions (1) and (2) are related to GTM operations. 
Assumptions (3) to (5) are related to the GTM FPGA designs. 

(1) Only one image is processed in a GTM operation. The 
size of the image frame and the sizes of all image regions are 
available before mapping. 

(2) No loop-carry dependency exists in a window function. 
(3) The input image data are stored on the off-chip memory 

of FPGA boards.  The output data are also stored on the off-
chip memory. An upper bound of the number of output data is 
known beforehand.  

(4) The default FPGA design style is generic. The generic 
design style treats the template data (weights and locations) as 
variables. Therefore, a generic design can be used in the 
window computation of multiple templates. If the other design 
style, a hard-coded one, is to be used instead, the template data 
need to be constants and available before the mapping. It is 
assumed that there is only one image region in any hard-coded 
design. 

(5) An FPGA library of operator and storage components 
are available.  The library also contains the area and the timing 
information.  

Some notations used in the paper are listed in Table 1 for 
convenience. Some of them will be explained later. In 
Example 1, NAP=9, NMW=1, RWIN=3, CWIN=4, RIMG=360, and 
CIMG=450. 

 
TABLE 1: GTM NOTATIONS 

NBITS No. of Bits per Image Pixel 
CIMG No. of Image Columns 
CWIN No. of Columns of Template Window 
NMW No. of Memory Writes in a Window Function 
NAP No. of Active Points 
RIMG No. of Image Rows 
RWIN No. of Rows of Template Window 
NMP No. of Memory Ports to an FPGA Chip 
NP No. of Memory Ports Used (NP≤NMP) 
NR(P) No. of Reads from Memory Port P 
NR No. of Reads in Window Evaluation 
NW No. of Writes in Window Evaluation 
NW(P) No. of Writes to Memory Port P 
NLB No. of Line Buffers 
NLB(P) No. of Line Buffers for Memory Port P  
PF Packing Factor 

 

B. GTM Design Options 

Design options in the GTM mapping process can be 
grouped into those for the window movement (data buffering 
and packing in Section 1), the window function evaluation 
(unit function in Section 2), and the integration (region 
function in Section 3).  The GTM mapping complexity is 
discussed in Section 4. 

for (i=0; i<450; i++) 
for (j=0; j<360; j++){ 
       y[i,j]=x[i,j]+x[i,j+1]+x[i,j+3]+ 
                x[i+1,j]+x[i+1,j+1]+x[i+1,j+2]+ 
                x[i+2,j]+x[i+2,j+2]+x[i+2,j+3]) } 
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1) Data Buffering and Packing Strategies for GTM 
Operations  

The data buffering and packing can be used to support the 
pixel-level parallelism of GTM operations and to reduce 
redundant memory accesses. The full and partial buffering and 
the packing structures were described in [19]. The basic idea 
of buffering and packing is reviewed and generalized here. 

When no image datum is buffered inside the FPGA chip, the 
window computation at each pixel location needs to read NAP 
pixel values from the memory. Since NAP is usually much 
larger than one, it is desirable to buffer image data inside the 
FPGA chip. The window function evaluation at a new pixel 
location with the full buffering needs only one image pixel 
from the external memory, whereas with the partial buffering it 
needs RWIN image pixels. When the number of image pixels 
provided from the external memory is less than RWIN and 
greater than one, a hybrid buffering scheme is needed. There is 
a trade-off in minimizing the memory access and the buffer 
size. 

For a 3×4 template window, the full buffering requires two 
image line buffers, while the partial buffering does not require 
any line buffer. Fig. 2 shows a hybrid buffer with one line 
buffer for a 3×4 template window where c=CIMG. Pixels 0, 1, 
2, and 3 are in the first row of the template window, pixels 
c+0, c+1, c+2, and c+3 in the second row, and pixels 2c+0, 
2c+1, 2c+2, and 2c+3 in the third. Pixels from 4 to c-1 are in a 
line buffer. When the window moves to the next pixel location, 
two pixels c+4 and 2c+4 need to be read from the external 
memory. A control circuit is needed to enable pixel c+0, not 
pixel 2c+0, to enter the line buffer. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Hybrid Buffering for a 3×4 Template 
 

When several image pixels are stored in one memory 
location, each memory read can provide multiple image pixels. 
Therefore, it is possible to use multiple copies of the window 
function hardware to compute at several consecutive pixel 
locations in parallel. In order to support this parallelism, a 
special buffer called internal buffer is needed to distribute 
image pixels to the corresponding hardware [19]. The number 
of copies of window function hardware used is called packing 
factor (PF).  

The buffering can be used together with the packing. Fig. 3 
shows a hybrid buffering with packing where packing factor is 
2. Pixels 0, 1, 2, 3, c+0, c+1, c+2, c+3, 2c+0, 2c+1, 2c+2, and 
2c+3 are in the even window. Pixels 1, 2, 3, 4, c+1, c+2, c+3, 

c+4, 2c+1, 2c+2, 2c+3, and 2c+4 are in the odd window. All 
the pixels with even addresses are in the top registers or the 
top line buffer, whereas all the pixels with odd addresses are in 
the bottom registers or the bottom line buffer. When the 
window computation proceeds to the next two pixel locations, 
two memory reads are needed. The first brings in two pixels 
c+6 and c+7; the second brings in two pixels 2c+6 and 2c+7.  
A control circuit is needed to enable pixels c+0 and c+1, not 
pixels 2c+0 and 2c+1, to enter the line buffers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Hybrid Buffering with Packing (packing factor=2) for a 3×4 Window 

 
In general, an FPGA buffer can be structured to use multiple 

memory ports, and different memory ports may support 
different numbers of reads during the window function 
evaluation. A general FPGA buffer with NP (1≤NP≤NMP) 
memory ports consists of NP FPGA buffers, each 
corresponding to one memory port. These buffers can be full , 
partial, hybrid, or internal buffers. The template window is 
partitioned into NP regions, each with several rows of the 
template window and corresponding to one memory port. An 
example of such a general FPGA buffer structure is shown in 
Fig. 4. In this example, NR=3 and RWIN=5.  The buffer 
structure uses two memory ports (NP=2), and therefore the 
template window is partitioned into two parts. The top part is 
for two rows of the template window. The corresponding 
memory port supplies one image pixel during each window 
computation (NR(1)=1), and thus is connected to a full buffer. 
The bottom part is for three rows. The port supplies two pixels 
(NR(2)=2), and thus is connected to a hybrid buffer. Both 
memory ports need to buffer one image line (NLB(1)=NLB(2) = 
1) aside from data inside the template window. Also, if the 
number of active points is less than the number of points in the 
template window, a selector that outputs only active point 
pixels is necessary when the generic design style is used.   
Note that when the memory packing is involved, there could 
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be more than one selector [26].  In addition the shift registers 
in Fig. 4 must have parallel outputs that are connected either 
directly to the window computation part or through the 
selector. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: A General FPGA Buffer Example 

 
In the GTM mapping, such FPGA buffers are provided 

when 1≤NR≤RWIN. The internal buffers [19] to distribute pixel 
data to different copies of window computation are provided 
when NR=NAP and PF > 1. No buffering strategy is considered 
for RWIN < NR < NAP because of the complicated memory 
controller design and relatively few performance benefits. 
Note it is assumed that RWIN < NAP, i.e., the number of active 
points is greater than the number of rows of the template 
window. 

 
2) Unit Function 

As discussed previously, when the packing strategy is used, 
it is possible to evaluate in parallel a window function at 
consecutive pixel locations along the scanned line.  A unit 
function is an FPGA pipelined hardware functional unit that 
computes a window function at PF consecutive pixel locations 
by using PF copies of a window function design. The unit 
function may share the hardware across these copies. As a 
result, there are many unit function design options that trade 
off hardware space and speed. There is no predefined structure 
of a unit function; a unit function design depends on the 
scheduling of window function operations and the assignment 
of operations to hardware components. The loop pipelining 
technique of modulo scheduling is used in the unit function 
design in this paper. Recall that the window function is a loop 
body. In modulo scheduling, iterations of a loop body are 
initiated at a constant time apart. This constant time (in clock 
cycle) is called the initiation interval (II) [ 21]. Therefore, the 
throughput of a unit function is proportional to PF/II when the 
number of iterations is large. In the GTM mapping, all 
possible PFs and IIs are considered. 

 
3) Region Function 

A region function consists of a unit function and an FPGA 
buffer as shown in Fig. 5. The II of the unit function should be 
equal to the data introduction interval, which is the clock 

cycles needed for external memory access (by the buffer and 
the unit function) in each window computation. Given a data 
introduction interval, it can be proved that there exists a 
modulo schedule of the unit function with II equal to it [27].  
(Assumption (2) in Section 2.1 was used in the proof.) The 
region function iterates the execution of its unit function 
through a set of templates (when the design style is generic) 
and pixels in a part of image regions. So a region function is 
obtained by combining one unit function and one FPGA 
buffer, and then being assigned a set of templates and a part of 
image regions. Also a region function has to be assigned to a 
specific FPGA chip and the memory ports connected to the 
chip.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Region Function 
 

One or more region functions should be selected for each 
FPGA chip such that the total execution time is minimal under 
the FPGA board resource constraints such as the number of 
FPGA chips, the size of FPGA chips, the number of memory 
ports, and the width of memory ports. Region functions on all 
FPGA chips work independently and in parallel on different 
parts of image regions and/or, if any, different templates under 
the control of a host program. Note that different region 
functions on the same FPGA chip do not share the memory 
banks because each region function may need to access the 
memory in every clock cycle during the computation. 

 
4) GTM Mapping Complexity 

A naïve approach is to enumerate FPGA buffers and unit 
function designs and to compare all the combinations so as to 
get the final region functions. The complexity of this approach 
is very high as shown below.  

The number of different FPGA buffers (including non 
buffering and internal buffer) for a GTM operation is lower 
bounded by η × NPF where η is the number of ways to 
distribute memory reads for a window function among 
memory ports and NPF is the number of all possible packing 
factors.  Furthermore η = η1 + η2 where η1 is the number of 
ways of read distribution when 1≤NR≤RWIN and η2 is that when 
NR=NAP.  More specifically, η1 is the number of possible pairs 
of vectors (NR(1), …, NR(Np) and (NLB(1), …, NLB(Np)) where 
1≤Np≤NMP and 1≤NR≤RWIN, that satisfy the following 
conditions: 
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And η2 is the number of vectors (NR(1), …, NR(Np)) where 
1≤Np≤NMP and NR=NAP, that satisfy the following conditions: 

 
 
 
 
 

There are no general formula to express η1 and η2. But the 

growth of η2 alone is )( )1( −MPN
APNθ . 

In the unit function design, all possible PFs and IIs are 
considered. For each pair of (PF, II) , the corresponding unit 
function design needs to go through a pipeline synthesis 
process, which includes scheduling of PF copies of a dataflow 
graph, resource sharing and binding, and datapath and 
controller generation. For scheduling a general dataflow graph 
(not a tree), the minimum-latency resource-constrained 
scheduling problem and the minimum-resource latency-
constrained scheduling problem are known to be intractable 
[31]. The scheduling in the GTM mapping has to be performed 
as many times as the number of all possible pairs of (PF, II) . 

As to the building of region functions, given m FPGA 
buffers and n unit function designs, there are mn region 
functions and the number of sets of region functions to be 
considered is 2mn. Note that the image region partitioning, the 
processing region binding, and the template bindings have not 
been considered yet.  

Therefore, the complexity of this naïve approach is very 
high, and a much more eff icient approach needs to be 
developed. Note that, although the mapping problem is 
formulated as a constrained optimization problem, there is no 
attempt in getting optimal solutions in this paper due to the 
problem complexity.  Instead this paper proposes eff icient 
algorithms on getting “good” solutions, hopefully “near-
optimal” because of the solution optimality to some sub-
problems involved. 

 

III . MAPPING METHODOLOGY 

A. Overall Approach 

The methodology of building an near optimal GTM design 
is to first enumerate, evaluate, and list enough number of 
region functions, i.e., pairs of unit function and FPGA buffer, 
and then to select a subset of candidate region functions, bind 
them to FPGA chips and memory ports, and partition the total 
workload among the region functions. It has three steps. 

Step 1: Enumerate all non-dominated memory access 
patterns (MAPs). The concept of MAP, as defined later, is a 
key to the mapping process because both unit functions and 
buffer structures can be determined from a MAP. 

Step 2: A set of region functions, one for each non-
dominated MAP, can therefore be obtained. These region 
functions can be ranked based on their throughputs, i.e., PF/II .  

Step 3: The region function selection and binding and 
workload partition are performed so as to minimize the total 
execution time. 

The first step is an enumeration process that requires an 
eff icient algorithm. The second step is a synthesis and 
generation process. For each non-dominated MAP, a 
corresponding unit function design can be obtained via a 
synthesis process and a corresponding FPGA buffer can be 
generated. Then areas of the unit function and the buffer can 
be estimated. The last step is a combinatorial optimization 
process.  In the following, each step is described in detail after 
the input representations are introduced. 

B. Input Representations 

The inputs of the GTM mapping process include the FPGA 
board specification, the VHDL FPGA component library of 
the operators, and the GTM operation specification. 

The target FPGA board can be specified with the number of 
FPGA chips (NFPGA), the number of memory ports connected 
to an FPGA chip (NMP), the width of memory port (WPORT), 
and the CLB (or SLICE) count of FPGA (SFPGA).   

The VHDL library contains the information about the 
operator and storage component VHDL designs, which should 
include the area and the timing.  The implementation of an 
operator in the library can be either pipelined or non-pipelined. 
A non-pipelined operator is considered as a pipelined design 
with only one stage.  The timing of an operator can be 
specified by two parameters, clock cycle and clock period. The 
area of an operator can be measured by FPGA CLB counts (or 
SLICE counts).  Because the library component information 
may vary for different FPGA famili es, the library is required to 
specify the FPGA family. The FPGA buffers are not included 
in the library, because they can be generated by an FPGA 
buffer generator. 

The GTM operation specification includes two parts. One is 
the image regions and templates that include the number of 
image regions, the number of templates associated with each 
image region, and the size of each image region. The other is 
the dataflow graph (DFG) of the window function. The DFG 
nodes include input nodes, output nodes and operation nodes. 
The input nodes include one type of particular nodes called 
pixel nodes, which represent the input image pixels at the 
active points. Each operation node needs to specify the 
resource type that is used to implement the operation. For 
example, the window function of Example 1 in Section II can 
be represented with a DFG as shown in Fig. 6(a). In this 
example, the window function simply sums up nine image 
pixel values at active points. The nine circle nodes at the top 
represent the nine image data at the active points, which may 
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come from an FPGA buffer or directly from memory ports. 
The cylinder node at the bottom represents a memory write 
operation. Fig. 4(b) shows another DFG, in which the hexagon 
nodes denote the inputs of template weights at the active 
points. A special text format has been developed to describe 
such a DFG. 

 
 
 
 
 
 
 

 
 
Fig. 6: Two Dataflow Graphs 

 

C. Step 1: Memory Access Pattern Enumeration 

For a given pair of PF (packing factor) and II ( initiation 
interval), a memory access pattern (MAP) includes the 
following information. 
1. The number of memory ports used (NP), which should be 

less than or equal to NMP.  
2. The number of memory reads (NR(p)) from each port, p, 

(1≤p≤NP) in the II clock cycles. The vector (NR(1), 
NR(2),…, NR(NP)) is called the memory read pattern. 

3. The number of memory writes (NW(p)) to each port, p, 
(1≤p≤NP) in II clock cycles. The vector (NW(1), NW(2),…, 
NW(NP)) is called the memory write pattern.  

Intuitively, a MAP for a given pair of PF and II can be 
represented as a rectangle with NP×II cells. Each cell i s labeled 
with R for reading, W for writing, or I for idling. A row of 
cells stands for memory accesses of one memory port, and a 
column of cells stands for the memory accesses in one 
particular clock cycle. For example, when PF=2, II=4, and 
NMP=4, there exist many MAPs. One of them is shown below, 
which uses two memory ports (NP=2). For this MAP, the 
memory read pattern is (3,2) and the memory write pattern is 
(1,1). 

 
 
 
 
 
The GTM operation involves intensive memory accesses 

when image is stored off-chip. At each pixel location, the 
window function consumes NAP image pixel values. The GTM 
FPGA designs that use different MAPs tend to have significant 
differences in performance and hardware resource 
requirements. Both the FPGA buffer and the unit function 
design can be derived based on a MAP (see the next section). 
Therefore, the MAP enumeration is a systematic way to 
enumerate region functions. However, not all MAPs can lead 
to a useful region function.   

A MAP can be evaluated with the following four quality 

measures. The first is the number of image line buffers (NL) 
required by a MAP. When the total number of memory reads 
NR by the MAP is less than the number of rows of the template 
window (RWIN), NL = RWIN - NR. Larger NL requires more 
FPGA area for the buffer. The second is the number of 
memory port (NP). Larger NP means more memory banks and 
more FPGA input/output pins. The third is the initiation 
interval (II) . Larger II corresponds to a lower throughput of the 
unit function. The last measure is the memory size requirement 
(SM). Lager SM requires more memory space. 

Definition: For two MAPs A and B with the same packing 
factor, A dominates B if A’s NL ≤ B’s NL, A’s NP ≤ B’s NP, A’s 
SM ≤ B’s SM, and A’s II ≤ B’s II . 

Therefore, if MAP A dominates MAP B, then the region 
function corresponding to A is most likely better than the 
region function corresponding to B. Hence, a dominated MAP 
can be safely discarded. A MAP not dominated by any other 
MAPs is called a non-dominated MAP.  

Note that non-dominated MAPs are only a very small 
fraction of all MAPs.  Algorithms to prune the MAP design 
space (remove dominated MAPs without enumeration) and to 
obtain all non-dominated MAPs were developed by the 
authors of this paper. Their effectiveness was detailed in [28] 
where it was shown that, when the pruning was applied to a 
particular case (four memory ports and each memory location 
storing four pixels), 72 MAPs which were less than 2% of the 
MAP space survive for a small problem (a 3×3 template with 9 
active points) and 346 MAPs which were less than 0.2% 
remain for a bigger problem (a 15×15 template with 30 active 
points). 

D. Step 2: Region Function Generation 

A region function consists of two parts, a unit function and 
an FPGA buffer. Section 1 describes the unit function mapping 
process and the unit function area estimate. Section 2 presents 
the FPGA buffer generation and its area estimation 

. 
1) Unit Function Mapping and Area Estimate 

The inputs for the unit function mapping include FPGA 
board information, FPGA library components, a DFG of 
window function, and a MAP including PF and II . A scheduled 
DFG and a resource table that summarizes the usage of 
hardware resources are produced after scheduling and binding. 
They can be converted into a datapath and a control table 
based on which the unit function area is computed. 

The problem of the unit function mapping is closely related 
to the well -studied high-level synthesis (HLS) [29-32]. 
Automated approaches to the fundamental HLS problem 
consist of two related constrained optimization problems: 
temporal scheduling and spatial binding. HLS techniques have 
been widely applied to the compiler (or synthesis tool) designs 
on reconfigurable systems. The COBRA-ABS high-level 
synthesis system [8] performs globally optimizing high-level 
synthesis using simulated annealing, integrating all 
partitioning, scheduling, binding, and allocation operations in 
one optimization step.  

(a) (b) 

R        R         R      W 

R        R         W       I 
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NP 
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The objective of the unit function mapping in this paper is 
to minimize the unit function area under constraints of an 
initiation interval (II) , a packing factor (PF), and latency. The 
approach in the unit function mapping, unlike that in [8], is to 
perform the scheduling and the resource binding separately. 
The unit function mapping consists of five sequential tasks: 
• Task 1: Schedule one DFG to determine the latency that is 

used in Task 2. 
• Task 2: Schedule PF copies of the DFGs together using a 

list-scheduling algorithm. 
• Task 3: Perform the operator sharing and binding. 
• Task 4: Generate the datapath and the controller. 
• Task 5: Estimate the unit function area. 

Each task is described as follows. 
Task 2: L ist-Scheduling with PF DFGs: The scheduling 

problem in the unit function mapping is to obtain a modulo 
schedule of a functional pipeline that allows operator resources 
with pipelined implementations. The schedule minimizes the 
area requirement subject to latency and II constraints. In order 
to reduce the complexity of the scheduling problem, a list-
scheduling algorithm (heuristic) is used. It is based on a 
similar algorithm for the functional pipeline scheduling in [31] 
where each operator resource is assumed to be non-pipelined. 
The computation of resource lower bounds is modified 
accordingly.  

The initial upper bound of resource instances for each 
resource type in the list-scheduling algorithm [31] is one. A 
new heuristic on a suitable initial upper bound is used in the 
unit function mapping. The initial upper bound are defined by 
the new heuristic as follows. Based on the initial scheduling 
information from Task 1, for each required resource type, 
compute the first control step TS that an operation of this type 
is scheduled, and then count the number NOP of operations of 
this type that are scheduled at the time interval from TS+1 to 
TS+II . The initial upper bound of this type of resource 
instances is defined as  IIN OP / . Setting the initial upper 

bounds to be ones may not lead to a scheduling result as good 
as the new heuristic. A comparison of the two methods can be 
found in [26]. 

Task 3: Operator Shar ing and Binding: Once the DFG 
(actually PF copies of the original DFG) is scheduled and the 
start time of each node vi is denoted by ti, i=1, 2, …, n, two 
operations vi and vj with the same resource type executing at  

 
 
 

can share the resource instance if and only if ji kk ≠ . This 

condition is easy to check. In the current implementation, the 
hardware sharing is always selected whenever the above 
condition holds. That means, the area cost of multiplexers is 
assumed to be less than that of the hardware being shared 
(which may not be true for simple operators).  It is also 
assumed that one operator can have only one resource type 
that implements it.  Task 3 produces a resource table according 
to the scheduled DFG. 

Task 4: Datapath and Controller Generation: The 
datapath generation involves the insertion of registers and 
multiplexers and the interconnections of components. The 
controller generation is to produce a control table that controls 
registers and multiplexers to steer data flows in the datapath. 
The inputs to the datapath and controller generation are the 
scheduled DFG and the corresponding resource table. The 
tasks involved include:  
1. Building ports: When no FPGA buffer is used, some pixel 

nodes need to be merged to share memory ports according 
to the MAP.  

2. Adding delay registers: The data coming from the FPGA 
buffer or the memory ports are assumed to be valid for 
only one clock cycle. If an image pixel value is available 
at the time step n and is consumed at the time step m, then 
m-n registers are needed to delay the datum. Note that 
when the FPGA buffer strategy is used, n is 1; otherwise n 
is the data arrival time. Also, because the output of an 
operator is valid for II clock cycles, if the output is not 
consumed after II clock cycles, delaying registers are 
needed. 

3. Adding node registers: They hold the computation results 
of nodes.  

4. Adding multiplexers when multiple nodes share the same 
resource instance. Note that when the pixel nodes are 
grouped, the inputs to some operators are also grouped 
accordingly. Thus the number of inputs to the 
corresponding multiplexer can be reduced. 

5. Generating the datapath in a net list format and the control 
table according to the previous results. 

Task 5: Unit Function Area Computation 
The unit function area can be computed based on the 

datapath and the control table as follows. Note that the FPGA 
routing area is not considered. 
1. For the datapath area, the task is straightforward because 

every component in the datapath is from the FPGA 
component library and has its area specified. So simply 
summing up these component areas is enough. Note that 
when the library component is implemented in VHDL 
with generic parameters, formula of calculating the areas 
according to the parameters are assumed to be available. 
Because the CLBs in practice may be shared by different 
library components, the datapath area is overestimated in 
our approach. 

2. For the controller area estimate, the task is more 
complicated.  The controller is to control the datapath to 
compute through a pipelined loop. It goes through three 
phases, which are prologue, steady state and epilogue. 
Assume that (1) the lengths (clock cycles) of prologue, 
steady state and epilogue are n1, n2, and n3 respectively, 
(2) the number of iterations through the steady state phase 
is n, and (3) one-hot encoding is used in the controller 
state encoding. Then at least n1+n2+n3+log2(n) flip-flops 
or ((n1+n2+n3+ log2(n))/2 CLBs) are needed for the state 
encoding and transitions, where n1+n2+n3 flip-flops are 

. somefor  1   where,

and ,  somefor  1   where,
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used for the state encoding and log2(n) flip-flops are used 
for a counter. Control signals of the controller include 
register enable signals and multiplexer selection signals. 
Their area estimates can be found in [26]. 

 
2) FPGA Buffer Generation and Buffer Area Estimate 

Given a MAP, NAP, and sizes of image regions and template 
window, the FPGA buffer can be generated as follows. In 
order to reduce the initial buffer filli ng time, the number of 
line buffers for memory port p, NLB(p) (1≤p≤NP), can be 
computed by the minmax decomposition of RWIN-NR with 
respect to NP. That is, NLB(1)+…+ NLB(NP)= RWIN-NR and the 
maximum values of NLB(1),…,NLB(NP) is minimized. For 
example, { 3, 2, 2} is the minmax decomposition of 7 with 
respect to 3. Then, when NR = NAP and PF>1, each of the NP 
memory ports corresponds to an internal buffer; when 1 ≤ NR 
≤ RWIN, the buffer type for each memory port can be 
determined as follows. 

Buffer Type Condition 
Partial NLB(p)=0 
Full  NR(p)=1, NLB(p)≠0 

Hybrid NR(p)>1, NLB(p)≠0 
After the buffer structure is determined, the template 

window can be partitioned accordingly. Each partition (several 
consecutive rows of the original template window) 
corresponds to one of the four types of basic FPGA buffers—
Internal Buffer, Full Buffer, Partial Buffer, and Hybrid Buffer. 
An entire FPGA buffer can then be generated by combining 
those buffers and selectors, if needed. An FPGA buffer for 
each memory port can be built i n a component hierarchy. For 
example, a full buffer consists of FIFOs (for line buffers) and 
shift registers (with parallel outputs for pixels at the template 
window), and a FIFO is composed of a dual port RAM and an 
address controller, and so on. The sizes of buffer components 
can also be computed according to the buffer parameters. 

A bottom-up approach is used in estimating the FPGA 
buffer area. The area of each base component of the buffer is 
computed first, and then the area of a higher layer component 
is obtained by adding up areas of all it s components. The 
following gives some examples of buffer component area 
computation. 

Area of Dual Por t RAM : Assume that the depth and the 
width of the dual port RAM are n and w, respectively. When 
the LUT in a CLB is used for the RAM implementation, the 
number of CLBs is w×n/16. When the dedicated BlockRAM 
is used, assume that WB is the smallest value of BlockRAM 
data width that is not less than w, then the number of 
BlockRAMs is n/(NBRAM/WB), where NBRAM is the number of 
bits per BlockRAM. 

Area of Shift Register (with parallel outputs): Assume 
that the depth and the width of the shift register are n and w 
respectively. The number of CLBs for this shift register is 
n×w/2. 

Area of FIFO: The FIFO consists of two parts—Dual Port 
RAM and Address Control. Assume that the depth and the 

width of a FIFO are n and w, respectively. The control part 
consists of two counters with enable and reset. The two 
counters use 2×log2(n) flip-flops, and thus log2(n) CLBs. 
Then the total area is the sum of both components.  

Area of Full Buffer with Packing: The full buffer with 
packing consists of FIFOs with equal size and shift registers 
with equal size. In order to compute the area, the numbers of 
FIFOs and shift registers, the lengths of the FIFO and the shift 
register are needed. The full buffer with packing has the 
following parameters: the number of columns on image region 
(CIMG), the number of rows on template window (RWIN), the 
number of columns on template window (CWIM), the packing 
factor (PF), and the number of bits on image pixel (NBITS).  

The number of shift registers is RWIN×PF. The number of 
FIFOs is (RWIN-1)×PF. Let LREG be the length of the shift 
register and LFIFO be the length of the FIFO. Then  

 
 
 
For example, when PF=1, CIMG=80, and CWIN=4, then 

LREG=4 and LFIFO=79. When PF=2, CIMG=80, and CWIN=4, then 
LREG=3 and LFIFO=39. It is assumed that CIMG is divisible by 
PF. Then the full buffer area is the sum of areas of FIFOs and 
areas of shift registers. Note that when PF=1, the computed 
area is for the full buffer without packing. The area estimates 
for other types of buffers can be obtained similarly (see [26] 
for details).  

E. Step 3: Region Function Selection and Binding 

In the region function selection and binding process, a set of 
region functions is selected for each FPGA chip and each 
region function is assigned particular memory ports, templates, 
and processing regions (consecutive rows of an image region). 
The process therefore includes the FPGA chip binding, the 
memory port binding, the image region partitioning and the 
processing region binding, and the template binding. For an 
FPGA chip, i (1≤i≤NFPGA), the region functions RFi,j, 1 ≤ j ≤ 
q(i), together form the chip design, which has to satisfy an 
FPGA area constraint and a memory port constraint. As a 
result, for the FPGA chip binding and the memory port 
binding, the combinatorial optimization problem can be 
formulated as follows. 
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In the above formulation, the objective function is the GTM 
computation time, NFPGA is the number of FPGA chips on the 
target board, and NMP is the number of memory ports 
connected to each FPGA chip. Time(RFi,j) stands for the RFi,j 
execution time, Area(RFi,j) for the RFi,j FPGA area, and 
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Port(RFi,j) for the RFi,j memory ports.  The execution time of 
the GTM design is the maximum execution time of all RFi,j 
execution times because all RFi,j work independently and in 
parallel.  Note that Time(RFi,j) cannot be obtained before the 
processing region binding and the template binding.  

Assume there are r image regions, IRs (1≤s≤r), for a GTM 
operation and there are rs templates, Ts,b (1≤b≤rs), in each 
image region IRs. Assume that the number of rows of each IRs 
is ds. A partition of IRs is a set of disjoint subsets, PRs,t 
(1≤t≤ps≤ds), of IRs, each with ds,t consecutive rows of the 
image, that satisfy 

 
 
 
To solve the above region function selection and binding 

problem, an eff icient algorithm was developed with the 
assumption that region functions have the same clock rate.  
Due to the space limitation, only the algorithm outline is given 
here (refer to [26] for details). 
1. The problem can be simpli fied to the case of a single 

FPGA chip by using the same set of region functions for 
different FPGAs. 

2. The problem can be further simpli fied by decoupling the 
memory port binding from the image region partitioning 
and processing region binding.  When the memory port 
binding problem is solved, the image region partitioning 
and processing region binding is straightforward. 

3. The memory port binding problem can be decoupled into 
two problems, a generalized knapsack problem and a 
generalized integer partition problem.  Either problem can 
be solved eff iciently. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

In this section, several experiments are performed to learn 
the mapping results under different constraints, and to compare 
the mapping results of different restricted GTM cases. 

A. Mapping Results 

In this experiment, Example 1 in Section II is used to 
ill ustrate the mapping results. It is assumed that NFPGA=1, 
NMP=1, WPORT =16, BDATA=8, NMW=1, RWIN=3, CWIN=4, 
CIMG=320, RIMG=200, and NAP=9. In this simple example, the 
FPGA board has only one FPGA chip that is connected to only 
one memory port. So the FPGA chip can contain only one 
region function and thus the whole GTM design consists of 
only one region function. There are totally eight non-
dominated MAPs and thus eight candidate region functions as 
shown in Table 4. If the FPGA chip has 500 CLBs, then the 
fourth region function is the fastest solution that needs 160,000 
clock cycles to compute.  

For the WildForce FPGA board [33], which can be 
connected with a host computer such as a PC via the PCI bus 
of the host computer, there are five FPGA chips, each with one 
memory port connected, each memory word is 32 bits wide, 
and each FPGA has 3,136 CLBs. In this case, NFPGA=5, 

NMP=1, WPORT =32, SFPGA=3136, and the GTM mapping tool 
produces a region function (PF=4 and II=5) with an area of 
1236 that works on the five FPGA chips in parallel. The 
computation time is 16,000 clock cycles. It can be observed 
that each FPGA chip still has extra area but the region function 
is the fastest design (the tool can produce) already. For this 
small example, if there were more memory ports, then a bigger 
region function with more copies of the window function 
and/or multiple region functions could be accommodated and 
further speedup could be obtained. Assume that each FPGA 
chip has 4 memory ports instead, i.e. NMP=4. Then the GTM 
mapping tool produces 43 candidate region function designs 
and binds two region functions to each FPGA chip, one with 
an area of 1,236 (PF=4, II=5 and NP=1), and the other with an 
area of 982 (PF=4, II=2 and NP=3). The computation time is 
4,800 clock cycles. The speedup is about 3.3 compared with 
the single memory port case. If the FPGA CLB count were 
larger than 4,994 (=1,236×4), then the GTM mapping tool 
would have selected four copies of the fastest region function 
design in each FPGA and obtained a speedup of four.  

 
TABLE 2: ALL CANDIDATE REGION FUNCTION DESIGNS 

B. Mapping Results Under Different Constraints 

Several experiments are performed to show how the 
mapping results change when the FPGA board parameters 
change. They include CLB counts, the number of the memory 
ports, and the width of the memory data port. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Mapping Results of Different Memory Port Numbers (WPORT =32) 
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Again Example 1 in Section II is used. It is assumed that 
NFPGA=1, WPORT =32, BDATA=8, NMW=1, RWIN=3, CWIN=4, 
CIMG=320, RIMG=200, and NAP=9.  Fig. 7 shows the number of 
clock cycles of the GTM mapping results. The FPGA CLB 
count is in the range from 300 to 5,300. As the CLB count 
increases, initially the computation time of the mapping results 
for the one memory port case is reduced rapidly. But when the 
FPGA CLB count is over 1,300, the computation time stays 
constant. That means increasing the FPGA size further does 
not help any more. Such an FPGA CLB count is called the 
critical CLB number. For the two-memory port case, the 
critical CLB number is 2,100. For the three-memory port case, 
the critical CLB number is 3,600. For the four-memory port 
case, the critical CLB number is 5,000. It can be seen from 
Fig. 7 that the speedup of using two memory ports compared 
with using one port is roughly 2 when the FPGA is large 
enough. Also at some points, adding more memory ports leads 
to only marginal speedup. Similar results can be observed 
when data port is equal to 16 or 8 bits wide. 

Fig. 8 compares the mapping results of different memory 
data port widths. When the FPGA CLB counts are large, the 
GTM mapping tool always produces a faster GTM design 
given a wider memory data port. But the speedup is less than 
the ratio of the increase in memory data port widths. This is 
because although a wider memory data port allows the packing 
of more window function copies in a unit function, the packing 
strategy increases the number of memory writes as well and 
thus increases the minimal II .  On the other hand, when the 
FPGA CLB counts are small , increasing the width of memory 
data ports may not lead to speed increase. Similar results can 
be obtained when the number of ports is equal to 3, 2, or 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Mapping Results of Different Memory Data Port Widths (NMP=4) 

 

C. Mapping Results Under Different Restricted Cases 

Human designers often impose some restrictions in their 
FPGA designs to simpli fy the design tasks, hoping there is not 
much sacrificing in the design optimality. The experiments 
here try to provide some explanations to such human 
designers’ decisions. Table 3 lists three types of design 

restrictions. In the experiments, Example 1 in Section II is 
used. It is assumed that NFPGA=1, WPORT =32, BDATA=8, 
NMW=1, RWIN=3, CWIN=4, CIMG=320, RIMG=200, and NAP=9. 

 
 TABLE 3: RESTRICTIONS ON GTM MAPPING PROBLEM  

 
Fig. 9 shows the number of clock cycles of the GTM 

mapping results under various restrictions on region function 
and unit function when the FPGA CLB count is from 800 to 
5300. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9: Mapping Results Under Restrictions on Region Function or Unit 
Function 

 
Note that the results corresponding to no restriction and 

Restriction 4 are identical. This means that, for this example, 
the mapping results is not degraded by limiting the unit 
function design to one memory port or to multiple memory 
ports where each is exclusively used in reads or writes. The 
mapping results with Restriction 2 have the same execution 
times (clock cycles) as those without restrictions when FPGA 
CLB counts are very small (less than 900) or very large (larger 
than 4,600), but are a littl e slower otherwise. The mapping 
results with Restriction 1 have the same execution times (clock 
cycles) as those without restrictions when FPGA CLB counts 
are very small (less than 900), but are slower otherwise. The 
mapping results with Restriction 3 have almost the same 
execution times (clock cycles) as those without restrictions 
when FPGA CLB counts are large (greater than 3,700), but are 
very slow when FPGA CLB counts are small (less than 1,700).  

It can be concluded that when FPGA CLB counts are 
relatively large (larger than 3,700 for this example),  
Restrictions 2, 3, and 4 do not degrade the quality of the GTM 
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design. In this case, human designers may choose the 
constraints corresponding to Restrictions 2 and 3. Limiting 
unit function design to one memory port reduces many unit 
function design options. Limiting FPGA chip design to the 
same region functions reduces the complexity of region 
function selection and binding to a linear complexity.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Mapping Results Under Restrictions on FPGA Buffer 

 
For the same example, Fig. 10 shows the number of clock 

cycles of the GTM mapping results under the restrictions on 
the FPGA buffer when the FPGA CLB count is from 500 to 
5,300. It can be seen that the packing strategy (Restriction 6) 
affects the optimality of the mapping results very much. 
Therefore, the buffering with packing strategy is valuable for 
the speedup of GTM operations. When FPGA area is not too 
small (less than 800 CLBs), the buffer with one memory port 
(Restriction 7) corresponds to the same mapping result as 
those without restrictions. Without hybrid buffer (Restriction 
5), the mapping result is not as good as that without the 
restriction when FPGA CLB counts are in a range from 3,400 
to 4,000. Note that the hybrid buffer could affect the optimal 
mapping result more if the template window had more rows. 

Note that the availabilit y of the mapping tool enables the 
evaluation of board parameters with respect to a GTM 
application requirement.  It provides useful information when 
a user is trying to devise an “optimal” structure of FPGA 
board, such as the number of FPGA chips, the number of 
external memory ports, the memory word width, and the size 
of FPGA, for a given performance requirement of a GTM 
operation.  How to derive an optimal structure systematically 
is an interesting issue. 

 

V. CONCLUSIONS AND FUTURE WORKS 

The GTM operations cover a useful set of image processing 
algorithms, and their speedup by using reconfigurable 
computers has been shown in many research papers. However, 
the human design process for GTM operations is usually 

tedious even without exploring the whole design space and the 
compiler-like software tools for reconfigurable computing are 
far from eff icient. Therefore, it is quite desirable to map this 
type of applications onto reconfigurable computers 
automatically with some degree of design space exploration.  

In this research, the GTM operations are characterized and 
formulated as a special nested loop computation. GTM 
parallelism is explored by pipelining and by applying multiple 
copies of hardware units, such as multiple window functions in 
a unit function and multiple region functions in an FPGA chip. 
Various FPGA buffers are presented which provide design 
options for the tradeoff among the FPGA computation time, 
the FPGA area, and the memory size requirement. The design 
options also exist in circuit synthesis, FPGA chip and memory 
port binding, and image region partitioning and binding. The 
overall solution strategy is to enumerate the design space of 
basic pipelined FPGA design units and then select an optimal 
combination from these basic FPGA design units. 

The enumeration process of the FPGA buffers and the 
computation cores is performed through the memory access 
pattern enumeration. Effective pruning algorithms are created 
to obtain all the non-dominated memory access patterns. Then 
the FPGA buffer is generated according to the memory access 
pattern, and the datapath and controller of the pipelined 
computation core circuit is obtained through the high-level 
synthesis under the constraints of the memory access pattern. 
Finally an optimal combination from basic design units is 
selected by a combinatorial optimization process of FPGA 
chip and memory port binding, and image region partitioning 
and binding. 

The GTM mapping procedures and algorithms developed in 
this work are the basis of an automatic GTM software design 
tool that can produce a near optimal design, boost designers’ 
productivity, and improve design portabilit y. The current 
design tool can produce VHDL codes for the mapping results 
targeting the WildForce FPGA board. 

The GTM mapping on reconfigurable computers involves a 
wide range of research topics. Many assumptions were made 
so as to limit the scope of the research. Relaxing some of these 
assumptions will certainly enlarge the application range of the 
mapping methodology. Several limitations and possible future 
works are listed in the following. 

1. The FPGA design area estimates should be improved.  
Currently routing areas are not considered at all . Further study 
is needed.  In our current mapping tool, an FPGA area 
utili zation ratio is used to overcome the inaccurate area 
estimate. After FPGA placement and routing, if the design 
does not fit, the utili zation ratio is reduced so as to force the 
tool to produce a smaller design.  The process is iterated until 
a small enough design is found. 

2. The clock frequency of a design should be considered in 
the optimization process.  Two technical issues are involved.  
(1) How to accurately estimate the clock frequency without 
going through placement and routing?  (2) How to modify the 
optimization process to incorporate the frequency estimates?  
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Because the problem domain is limited to GTM, there is a 
chance to come out with rules of thumbs about frequency 
estimates.  

3. Hardware sharing overhead needs to be considered in 
terms of (multiplexer) area and design clock frequency. In the 
current implementation, hardware sharing is always performed 
whenever possible, even when the shared hardware has less 
area cost than that of the added multiplexers. A potential 
solution is to check the area overhead and add a clock cycle 
time constraint.  Since routing delays can be expected to be a 
problem for the time constraint, further study is needed.        

4. The pipeline synthesis of the unit function currently is 
performed in a very limited way.  It should be enhanced in the 
following aspects. First, the assumption that each operator in a 
dataflow graph has only one implementation should be 
removed. This will add another dimension to the design space 
and make the synthesis much more complicated. Second, the 
register sharing is not considered in the current synthesis 
algorithm. Third, the conventional compiler optimization 
techniques for a dataflow graph, such as constant folding, 
operator reduction, etc, are not considered.  When the 
templates are fixed, the constant folding task is expected to be 
performed by the users through providing a simpli fied DFG. 

There are many other limitations in the current 
implementation of the GTM mapping tool. For example, the 
window function is required to be template permutation-
invariant. The template permutation is to change the ordering 
of pairs of the template weight and the image value at the same 
template locations. A window function is said to be template 
permutation-invariant if any template permutation does not 
change the value of the window function. In Example 1 in 
Section II a template permutation is to change the ordering of 
the nine pixels. Since it does not change the sum, the 
summation (the window function) is template permutation-
invariant.  This property comes into play when examining non-
buffering cases. In these cases, the pixel nodes are grouped 
and are ordered in each group. There is a need to compute the 
locations of image pixels at all active points when the memory 
controller read the image data. With the template permutation-
invariant property the memory controller can read image pixels 
at all active points in any order as long as using the same order 
as the template weights. This limitation simpli fies the 
implementation of the memory controller, and can be fixed 
without diff iculty.  

 

REFERENCES 
[1] J.S.N. Jean, X. Liang, B. Drozd, and K. Tomko, "Accelerating An IR 

Automatic Target Recognition Application with FPGAs," in IEEE 
Symposium on Field- Programmable Custom Computing Machine, pp. 
290-291, April 1999. 

[2] K. Chia, H. Kim, S. Lansing, W. Mangione-Smith, and J. Villasenor, 
"High-Performance Automatic Target Recognition through Data-
Specific VLSI,'' in IEEE Transactions on VLSI Systems, Vol. 6, No. 3, 
pp. 364-371, 1998. 

[3] M. Rencher, and B. L. Hutchings, "Automated Target Recognition on 
Splash 2," in IEEE Symposium on FPGA Custom Computing Machines, 
pp. 192-200, April 1997. 

[4] S. Singh and R. Slous, "Accelerating Adobe Photoshop with the 
Reconfigurable Logic,'' in IEEE Symposium on FPGA Custom 
Computing Machines, pp. 236-244, 1998. 

[5] W.E. King, T.H. Drayer, R.W. Conners, and P. Araman, "Using 
MORRPH in an Industrial Machine Vision System,'' in IEEE 
Symposium on FPGA Custom Computing Machines, pp. 18-26, 1996. 

[6] Scott Hemmert and Brad Hutchings, “An Application Compiler for 
High-Speed Binary Image Morphology” , in IEEE Symposium on FPGA 
Custom Computing Machines, 2001. 

[7] C. Thibeault and G. Begin, "A Scan-Based Configurable, 
Programmable, and Scalable Architecture for Sliding Window-Based 
Operations," in IEEE Transactions on Computers, VOL. 48, NO. 6, 
pp.615-627, 1999. 

[8] [8] A. A. Duncan, "An Overview of the COBRA-ABS High Level 
Synthesis system for Multi-FPGA Systems," in IEEE Symposium on 
FPGA Custom Computing Machines, pp. 106-115, April 1998. 

[9] Q. Wang, etc, "Automated Field-Programmable Compute Accelerator 
Design Using Partial Evaluation," in IEEE Symposium on FPGA 
Custom Computing Machines, pp. 145-154, April 1997. 

[10] J. M. Arnold, D. A. Buell , and E. G. Davis, "Splash 2," in Proc. 4th Ann. 
ACM Symp. Parallel Algorithms and Architectures, pp. 316-322, 1992. 

[11] E. Waingold, M. Taylor, et al, "Baring it all to Software: Raw Machines 
an attached processing unit," in IEEE Computer, pp. 86-93, September 
1997. 

[12] M.B. Gokhale, J.M. Stone, "NAPA C: Compiling for a Hybrid 
RISK/FPGA Architecture," in IEEE Symposium on FPGA Custom 
Computing Machines, pp. 126-135, April 1998. 

[13] M.B. Gokhale and J.M. Stone, "Automatic Allocation of Arrays to 
Memories in FPGA Processors with Multiple Memory Banks," in IEEE 
Symposium on Field Programmable Custom Computing Machine, pp. 
63-69, 1999. 

[14] D. C. Cronquist, etc, "Specifying and Compiling Applications for 
RaPiD," in IEEE Symposium on FPGA Custom Computing Machines, 
pp. 116-125, April 1998. 

[15] C. Ebell ing, "Mapping Application to the RaPid configurable 
Architecture," in IEEE Symposium on FPGA Custom Computing 
Machines, pp. 106-115, April 1997. 

[16] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. “The Garp Architecture 
and C Compiler,” IEEE Computer, April 2000. 

[17] M. Hall , P. Diniz, K. Bondalapati, H. Ziegler, P. Duncan, R. Jain and J. 
Granacki, "DEFACTO:A Design Environment for Adaptive Computing 
Technology," in Proceedings of the 6th Reconfigurable Architectures 
Workshop (RAW'99), Springer-Verlag, 1999. 

[18] B. Draper, W. Bohm, J. Hammes, W. Najjar, R. Beveridge, C. Ross, M. 
Chawathe, M. Desai, J. Bins, “Compiling SA-C Programs to FPGAs: 
Performance Results,” International Conference on Vision Systems, 
Vancouver, p. 220-235, July 7-8, 2001. 

[19] X. Liang, J.S.N. Jean and K. Tomko, "Data Buffering and Allocation in 
Mapping Generalized Template Matching on Reconfigurable Systems," 
The Journal of Supercomputing, Special Issue on Engineering of 
Reconfigurable Hardware/Software Objects, 19(1):77-91, 2001. 

[20] B. Bosi, G. Bois and Y. Savaria, "Reconfigurable Pipeline 2-D 
Convolvers for Fast Digital Signal Processing," in IEEE Transactions on 
Very Large Scale Integration (VLSI) Systems, pp. 299-308, Vol. 7, No. 
3, 1999. 

[21] B. R. Rau and C. D. Glaeser, "Some scheduling techniques and an 
easily schedulable horizontal architecture for high performance 
scientific computing," Fourteenth Annual Workshop on 
Microprogramming, pp. 183-198, October 1981. 

[22] A. E. Charlesworth, "An approach to scientific array processing: The 
architectural design of the AP-120B/FPS-164 family," in Computer, 
14(9):18-27, September 1981.  

[23] M. Lam, "Software Pipelining: An effective scheduling technique for 
VLIW machines," in Proceeding of the ACM SIGPLAN'88 Conference 
on Programming Language Design and Implementation, pp. 318-328, 
June 1988. 

[24] M. Weinhardt and W. Luk, "Memory Access Optimization and RAM 
Inference for Pipeline Vectorization," in Proceedings of FPL'99, pp.61-
70, 1999. 

[25] P. Diniz and J. Park, "Automatic Synthesis of Date Storage and Control 
Structures for FPGA-based Computing Engines," in IEEE Symposium 
on Field Programmable Custom Computing Machines, 2000. 



> TVLSI-00264-2001.R1) < 
 

14 

[26] X. Liang, “Mapping of Generalized Template Matching on 
Reconfigurable Computers,” PhD Dissertation, Wright State University, 
December, 2001. 

[27] X. Liang and J. Jean, “Memory Access Scheduling and Loop 
Pipelining” , Proceedings of International Conference on Engineering of 
Reconfigurable Systems and Algorithms” , pp. 183-189, Las Vegas, 
Nevada, USA, June 2002 

[28] X. Liang and J.S.N. Jean, "Memory Access Pattern Enumeration in 
GTM Mapping on Reconfigurable Computers," in Proceedings of the 
International Conference on Engineering of Reconfigurable Systems and 
Algorithms, pp. 8-14, Las Vegas, Nevada, USA, June 2001. 

[29] Wayne Wolf, Andres Takach and Tien-Chien Lee "Architectural 
Optimization Methods for Control-Dominated Machines", in Paul 
Composano and Wayne Wolf, editors, High-Level VLSI Synthesis, 
pp.231-254, Kluwer Academic Publishers, 1991 

[30] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the 
Behavioral Synthesis of ASIC's", in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and System, Vol. 8, No. 6, pp. 661-
679, July 1989 

[31] Giovanni de Micheli, "Synthesis and Optimization of Digital Circuits", 
Mcgraw-Hill , Inc., 1994 

[32] D. Gajski, N. Dutt, A. Wu and S. Lin, "High-Level Synthesis--
Introduction to Chip and System Design", Kluwer Academic Publishers, 
1992 

[33]  “WildForceTM Reference Manual” , Annapolis Systems, Inc.  

 
 

Xuejun L iang (M’02) received his Ph.D. degree in computer 
science and engineering from Wright State University, Ohio, 
USA, in 2001, and his M. S. degree in mathematics from Beiji ng 
Normal University, Beiji ng, China, in 1985. 
 He was a graduate research assistant at Wright State 

University from 1997 to 2001. He served as an instructor, an assistant 
professor, and an associate processor, respectively, in the Department of 
Mathematics of Beiji ng Normal University from 1985 to 1997. Currently he 
is an assistant professor in the Department of Computer Science of Jackson 
State University, Jackson, MS 39157, USA. His current research interests 
include adaptive computing system, FPGA application, and computer 
architecture.  
 

Jack Shiann-Ning Jean received the B.S. and M.S. degrees 
from the National Taiwan University, Taiwan, in 1981 and 
1983, respectively, and the Ph.D. degree from the University of 
Southern California, Los Angeles, C.A., in 1988, all in 
electrical engineering. Currently he is a Professor in the 

Computer Science and Engineering Department of Wright State University, 
Dayton, Ohio.  His research interests include parallel processing, 
reconfigurable computing, and machine learning. 

 


