
> TVLSI-00264-2001.R1) <

1

Abstract—Image processing algor ithms for template matching,

2D digital fil tering, morphologic operations, and motion
estimation share some common properties. They can all benefit
from using reconfigurable computers that use co-processor
boards based on FPGA (field programmable gate arr ay) chips.
This paper characterizes those applications as generalized
template matching (GTM) operations and describes the mapping
of the GTM operations onto reconfigurable computers. A three-
step approach is described. The first two steps enumerate and
prune the design space of basic GTM building blocks, which
consist of FPGA buffers and GTM computation cores. The last
step is to achieve a solution through an optimal combination of
these building blocks where the cost function is the FPGA
computation time and the constraints are FPGA co-processor
board resources. Var ious FPGA buffers are presented so as to
introduce design options of basic GTM building blocks.
Algor ithms used for the mapping are described. Experimental
results are summarized to reveal the relationship between the
GTM mapping results and FPGA board resource parameters.

Index Terms—FPGA, Reconfigurable Computing, Image
Analysis, High-Level Synthesis, Template Matching

I. INTRODUCTION

econfigurable computers can offer significant
performance advantages over conventional processors as

they can be tailored to the particular computational needs of a
given application. The technology has been demonstrated for
the acceleration of various applications such as automatic
target recognition (ATR) [1]-[3], image processing [4],
machine vision [5], and morphology operation [6]. However,
the programming of reconfigurable computers is extremely
cumbersome, demanding that software developers also assume
the role of hardware designers. Thus, one key to unlocking the
full potential of these systems is developing truly automatic
mapping tools. Motivated by such a need, this paper focuses
on the mapping of generalized template matching (GTM) onto
reconfigurable computers to help designers explore the design
space and get a near optimal GTM design.

Manuscript received December 17, 2001. This research was supported by

a DAGSI/AFRL grant and an Ohio State research challenge grant.
Xuejun Liang was with the Department of Computer Science and

Engineering, Wright State University, Dayton, OH 45435 USA. He is now
with the Department of Computer Science, Jackson State University, Jackson,
MS 39217 USA (xuejun.liang@ccaix.jsums.edu).

Jack Jean is with the Department of Computer Science and Engineering,
Wright State University, Dayton, OH 45435 USA (phone: 937-775-5106; fax:
937-775-5133; email: jjean@cs.wright.edu).

The reconfigurable computer addressed in the paper is a
host computer with a co-processor board based on field
programmable gate arrays (FPGAs). The target FPGA board
may contain multiple FPGA chips, each with an array of
homogeneous memory banks. Fig. 1 shows such a board
structure where the dotted line and box are optional. The host
may access an on-board memory either directly or through the
FPGA chip. The host may also access the FPGA through a
FIFO (or a Xbar).

Fig. 1. Target Board Architecture

In Fig. 1, there are n memory banks for each FPGA chip.
Although a memory bank may be double-ported so as to allow
concurrent access of the host and the FPGA chip, each
memory bank is considered as single-ported as far as the
mapping process is concerned. So the words “memory bank”
and “memory port” are used interchangeably in the paper. All
memory banks have the same sizes in terms of storage capacity
and port width. All FPGA chips on the board have the same
structure and there is no direct connection between them.
Copies of the same image frame may be stored in different
memory banks to facilit ate the evaluation of multiple
templates. One image frame may be distributed among
memory banks, sometimes with overlapping, to enable parallel
evaluation of a single template. The host machine is
responsible for the distribution of image frames to memory
banks.

The generalized template matching (GTM) operations
proposed in the paper include image processing algorithms for
2D digital filtering, morphologic operations, motion
estimation, template matching and so on. They all i nvolve
moving a "window" (or template) pixel by pixel in a scanned
line order. The GTM operations are similar to the "Sliding
Window-Based Operations'' (SWO) as in [7]. However, the
GTM is more general in that all the pixels (or samples) in a
SWO window are involved in the window computation while

Mapping of Generalized Template Matching onto
Reconfigurable Computers

Xuejun Liang and Jack Jean

R

HOST

• • • FPGA

• • •

FPGA

• • • Mn

FIFO
(Xbar)

Mn M1 M1

> TVLSI-00264-2001.R1) <

2

in GTM the template in a window may be quite "sparse'' and
only a low percentage of pixels in a window is involved.

The overall approach of building the GTM design contains
three steps. The first two steps enumerate, evaluate, and list
enough number of basic GTM building blocks, called region
functions. Each region function contains an FPGA buffer and
a pipelined functional unit, called a unit function, which
evaluates the window computation at one or more consecutive
pixel locations. Different region functions have different
throughputs, occupy different FPGA areas, and require
different numbers of memory ports. The third step is to bind
one or more region functions to each FPGA chip so that the
total execution time is minimal under the FPGA board
resource constraints such as the number of FPGA chips, the
size of FPGA chips, the number of memory ports, and the
width of memory ports. Region functions on all FPGA chips
work independently and in parallel on different image regions
and/or, if any, different templates under the control of a host
program.

 Related Research Works There have been many research
projects on design environments for reconfigurable systems.
They include COBRA-ABS high-level synthesis system [8],
PECompiler [9], SPLASH Environment [10], RAW Machines
[11], Napa-C compiler [12,13], Rapid (Rapid-C) [14, 15],
GARP Compiler [16], DEFACTO [17], and Single
Assignment C [18]. These system tools are usually aimed to
support more general applications than the GTM operations
and targeted to their particular architectures. Therefore it is
diff icult for them to explore the parallelism inherent in the
GTM operations. In contrast, the various levels of parallelism
of GTM operations can be explored systematically by the
proposed mapping methodology. In addition, the GTM
mapping is not geared to particular hardware components such
as the dynamic control in the Rapid structure.

Brilli ant FPGA designs have previously been proposed for
some particular GTM applications, including automated target
recognition (ATR) and 2-D convolution. These designs
provide a clue for us to attack the GTM mapping problem
systematically, although the design optimization with respect
to the change of FPGA resource parameters is usually not
considered in these individual designs.

Very different mapping strategies are used in [2] and [3]
even though they are for the acceleration of the same ATR
algorithm which requires correlating a huge number of
predefined binary templates to the image area of interest. The
researchers at UCLA use very compact adder trees that take
advantage of template sparseness and FPGA lookup-table
memory capabilit y [2]. Their approach maps template
information directly into the hardware and relies on fast
reconfiguration to switch template information. They also take
advantage of template overlap by computing the results of
multiple correlations simultaneously. In contrast with this
method, the researchers at BYU use statically configured
hardware and memory-stored templates [3]. The technique
computes the correlations column by column, and sums up the

partial sums for all columns of template. In this method all
column correlations are computed in parallel but only one
column of data needs to be available for processing. This type
of buffering is called partial buffering in [19].

The 2-D convolution is an essential image-processing
function. The authors of [20] discuss several architectural
solutions to a convolver design. The architecture for a
complete 3×3 convolver includes shift registers for pixel
values contained in delay lines and for the 3×3 convolution
window. Because of these shift registers, the convolution can
be carried out one pixel location each clock period. This type
of buffering is called full buffering in [19]. Note that an
alternative implementation of delay lines is to use the
Configurable Logic Block (CLB) RAMs or Block RAMs
inside Xili nx FPGAs.

One technique used in parallel compilers is closely related
to the research. It is the software pipelining (or modulo
scheduling) [21]-[23] that allows overlapping execution of
consecutive loop iterations, with one fixed schedule for the
loop body. In the paper, this technique is employed for the
mapping of the GTM operations that can be characterized as
nested loop computations.

Since for many applications the throughput of the
reconfigurable coprocessor is limited by external memory
accesses, it is very important to speed up the memory access
by buffering frequently used data on-chip and scheduling as
many external memory accesses in parallel as possible. The
problem of buffering image data has been well studied [3],
[20], [24], and [25]. In [24], [25] efforts were devoted to
identifying data buffers for a nested loop from a compiler’s
perspective. Because their problem domain of nested loops is
more general and therefore more diff icult to handle than GTM,
no effort was attempted in [24], [25] to optimize the buffer
design under constraints of available resources. One way to
schedule as many external memory accesses as possible in
parallel is to distribute arrays over several memory banks. The
paper in [24] formulates the array allocation problem as an
Integer Linear Programming problem. In the formulation, one
array is restricted to be allocated on one memory bank. This
may eliminate the chance in which the parallelism could be
achieved by using multiple memory banks for one array such
as an image. The Napa-C compiler [13] also demands the same
restriction. In our approach, one image array can be
overlapped and distributed over several memory banks.

In [6] a two-level compilation scheme generates high-speed
binary morphology pipelines that can handle a sequence of
morphology templates described in a script file. The binary
templates are all of size 3×3 and individual operations can be
implemented with the same hardware circuit, called a
supercell , that contains a full buffer and a 256-bit look-up
table (8-bit input and 1-bit output). The first-level compiler,
used only once given an FPGA board, generates a set of
supercells with fixed connections that will fit in the FPGA
chips. The second-level compiler can customize the look-up
tables depending on the script file contents. The approach has

> TVLSI-00264-2001.R1) <

3

many advantages. One of them is very high compilation speed
because application users only need to use the second-level
compiler that takes seconds each time. The approach may not
be feasible for more complicated templates. For example, it is
not practical to use a single look-up table for a 3×3
convolution window on 8-bit pixels.

The paper is organized as follows. Section II describes the
GTM mapping problem. Section III presents the mapping
methodology. Section IV gives experimental results. Section V
concludes the paper.

II . GTM MAPPING PROBLEM

In the following, the GTM terminology and some basic
assumptions are given in Section A. The GTM mapping
problem and various design options are described in Section B.

A. GTM Terminology

The following example in C language syntax is used
throughout the paper.

Example 1:

The active points in a template include all the points

necessary for the template computation. A template is usually
specified with, for each active point, the active point location,
which denotes the offset of the active point in the template,
and the active point value, which denotes the "weight"
associated with the active point. In Example 1 the number of
active points is nine, and the active point locations are (0,0),
(0,1), (0,3), (1,0), (1,1), (1,2), (2,0), (2,2) and (2,3), and the
active point values are all ones.

The loop body that is iterated pixel by pixel through an
image is called a window function. A window function is
evaluated by applying one template at one pixel location at one
time. In Example 1 the window function is the summation of
nine image pixels at active points. A GTM operation is the
application of a window function to an image frame. The
image frame may be partitioned into several image regions IRi
(i=1,2,..,n), each being a set of consecutive image rows. For
the evaluation of a window function in each IRi, there is a set
of templates { Ti,1, Ti,2, …, Ti,m(i)} . Different image regions may
associate with different sets of templates. A GTM operation
thus can be formulated as the following nested loop
computation.

For all i Å1 to n //all image regions
 For all jÅ1 to m(i) //all templates
 For all pixel P in IRi //all pixels
 Window-Function (P, Ti,j)
From this formulation, the GTM operations may possess

two levels of parallelism. First, for the evaluation of a window

function different templates can be applied in parallel. This is
called template-level parallelism. Second, the evaluation of a
window function can be carried out in parallel at several pixel
locations. This is called pixel-level parallelism. Some further
assumptions about the GTM operations and FPGA designs are
given below in order to narrow down the scope of the paper.
Assumptions (1) and (2) are related to GTM operations.
Assumptions (3) to (5) are related to the GTM FPGA designs.

(1) Only one image is processed in a GTM operation. The
size of the image frame and the sizes of all image regions are
available before mapping.

(2) No loop-carry dependency exists in a window function.
(3) The input image data are stored on the off-chip memory

of FPGA boards. The output data are also stored on the off-
chip memory. An upper bound of the number of output data is
known beforehand.

(4) The default FPGA design style is generic. The generic
design style treats the template data (weights and locations) as
variables. Therefore, a generic design can be used in the
window computation of multiple templates. If the other design
style, a hard-coded one, is to be used instead, the template data
need to be constants and available before the mapping. It is
assumed that there is only one image region in any hard-coded
design.

(5) An FPGA library of operator and storage components
are available. The library also contains the area and the timing
information.

Some notations used in the paper are listed in Table 1 for
convenience. Some of them will be explained later. In
Example 1, NAP=9, NMW=1, RWIN=3, CWIN=4, RIMG=360, and
CIMG=450.

TABLE 1: GTM NOTATIONS

NBITS No. of Bits per Image Pixel
CIMG No. of Image Columns
CWIN No. of Columns of Template Window
NMW No. of Memory Writes in a Window Function
NAP No. of Active Points
RIMG No. of Image Rows
RWIN No. of Rows of Template Window
NMP No. of Memory Ports to an FPGA Chip
NP No. of Memory Ports Used (NP≤NMP)
NR(P) No. of Reads from Memory Port P
NR No. of Reads in Window Evaluation
NW No. of Writes in Window Evaluation
NW(P) No. of Writes to Memory Port P
NLB No. of Line Buffers
NLB(P) No. of Line Buffers for Memory Port P
PF Packing Factor

B. GTM Design Options

Design options in the GTM mapping process can be
grouped into those for the window movement (data buffering
and packing in Section 1), the window function evaluation
(unit function in Section 2), and the integration (region
function in Section 3). The GTM mapping complexity is
discussed in Section 4.

for (i=0; i<450; i++)
for (j=0; j<360; j++){
 y[i,j]=x[i,j]+x[i,j+1]+x[i,j+3]+
 x[i+1,j]+x[i+1,j+1]+x[i+1,j+2]+
 x[i+2,j]+x[i+2,j+2]+x[i+2,j+3]) }

> TVLSI-00264-2001.R1) <

4

1) Data Buffering and Packing Strategies for GTM
Operations

The data buffering and packing can be used to support the
pixel-level parallelism of GTM operations and to reduce
redundant memory accesses. The full and partial buffering and
the packing structures were described in [19]. The basic idea
of buffering and packing is reviewed and generalized here.

When no image datum is buffered inside the FPGA chip, the
window computation at each pixel location needs to read NAP
pixel values from the memory. Since NAP is usually much
larger than one, it is desirable to buffer image data inside the
FPGA chip. The window function evaluation at a new pixel
location with the full buffering needs only one image pixel
from the external memory, whereas with the partial buffering it
needs RWIN image pixels. When the number of image pixels
provided from the external memory is less than RWIN and
greater than one, a hybrid buffering scheme is needed. There is
a trade-off in minimizing the memory access and the buffer
size.

For a 3×4 template window, the full buffering requires two
image line buffers, while the partial buffering does not require
any line buffer. Fig. 2 shows a hybrid buffer with one line
buffer for a 3×4 template window where c=CIMG. Pixels 0, 1,
2, and 3 are in the first row of the template window, pixels
c+0, c+1, c+2, and c+3 in the second row, and pixels 2c+0,
2c+1, 2c+2, and 2c+3 in the third. Pixels from 4 to c-1 are in a
line buffer. When the window moves to the next pixel location,
two pixels c+4 and 2c+4 need to be read from the external
memory. A control circuit is needed to enable pixel c+0, not
pixel 2c+0, to enter the line buffer.

Fig. 2. Hybrid Buffering for a 3×4 Template

When several image pixels are stored in one memory
location, each memory read can provide multiple image pixels.
Therefore, it is possible to use multiple copies of the window
function hardware to compute at several consecutive pixel
locations in parallel. In order to support this parallelism, a
special buffer called internal buffer is needed to distribute
image pixels to the corresponding hardware [19]. The number
of copies of window function hardware used is called packing
factor (PF).

The buffering can be used together with the packing. Fig. 3
shows a hybrid buffering with packing where packing factor is
2. Pixels 0, 1, 2, 3, c+0, c+1, c+2, c+3, 2c+0, 2c+1, 2c+2, and
2c+3 are in the even window. Pixels 1, 2, 3, 4, c+1, c+2, c+3,

c+4, 2c+1, 2c+2, 2c+3, and 2c+4 are in the odd window. All
the pixels with even addresses are in the top registers or the
top line buffer, whereas all the pixels with odd addresses are in
the bottom registers or the bottom line buffer. When the
window computation proceeds to the next two pixel locations,
two memory reads are needed. The first brings in two pixels
c+6 and c+7; the second brings in two pixels 2c+6 and 2c+7.
A control circuit is needed to enable pixels c+0 and c+1, not
pixels 2c+0 and 2c+1, to enter the line buffers.

Fig. 3. Hybrid Buffering with Packing (packing factor=2) for a 3×4 Window

In general, an FPGA buffer can be structured to use multiple

memory ports, and different memory ports may support
different numbers of reads during the window function
evaluation. A general FPGA buffer with NP (1≤NP≤NMP)
memory ports consists of NP FPGA buffers, each
corresponding to one memory port. These buffers can be full ,
partial, hybrid, or internal buffers. The template window is
partitioned into NP regions, each with several rows of the
template window and corresponding to one memory port. An
example of such a general FPGA buffer structure is shown in
Fig. 4. In this example, NR=3 and RWIN=5. The buffer
structure uses two memory ports (NP=2), and therefore the
template window is partitioned into two parts. The top part is
for two rows of the template window. The corresponding
memory port supplies one image pixel during each window
computation (NR(1)=1), and thus is connected to a full buffer.
The bottom part is for three rows. The port supplies two pixels
(NR(2)=2), and thus is connected to a hybrid buffer. Both
memory ports need to buffer one image line (NLB(1)=NLB(2) =
1) aside from data inside the template window. Also, if the
number of active points is less than the number of points in the
template window, a selector that outputs only active point
pixels is necessary when the generic design style is used.
Note that when the memory packing is involved, there could

Memory

c+4, 2c+4

Window Function

c+1 2c+1 c+2 2c+2 c+0 2c+0 c+3 2c+3

4 … c-1 0 1 2 3

Line buffer

To Window Function

Even Window Function

c+6, 2c+6

c+7, 2c+7

c-2 … 6

c+2 2c+2 c+4 2c+4 c+0 2c+0

c+3 2c+3 c+5 2c+5 c+1 2c+1

Odd Window Function

4 2 0

Line buffer

Memory

c-1 … 7 5 3 1

Line buffer To Even Window Function

To Odd Window Function

> TVLSI-00264-2001.R1) <

5

be more than one selector [26]. In addition the shift registers
in Fig. 4 must have parallel outputs that are connected either
directly to the window computation part or through the
selector.

Fig. 4: A General FPGA Buffer Example

In the GTM mapping, such FPGA buffers are provided

when 1≤NR≤RWIN. The internal buffers [19] to distribute pixel
data to different copies of window computation are provided
when NR=NAP and PF > 1. No buffering strategy is considered
for RWIN < NR < NAP because of the complicated memory
controller design and relatively few performance benefits.
Note it is assumed that RWIN < NAP, i.e., the number of active
points is greater than the number of rows of the template
window.

2) Unit Function

As discussed previously, when the packing strategy is used,
it is possible to evaluate in parallel a window function at
consecutive pixel locations along the scanned line. A unit
function is an FPGA pipelined hardware functional unit that
computes a window function at PF consecutive pixel locations
by using PF copies of a window function design. The unit
function may share the hardware across these copies. As a
result, there are many unit function design options that trade
off hardware space and speed. There is no predefined structure
of a unit function; a unit function design depends on the
scheduling of window function operations and the assignment
of operations to hardware components. The loop pipelining
technique of modulo scheduling is used in the unit function
design in this paper. Recall that the window function is a loop
body. In modulo scheduling, iterations of a loop body are
initiated at a constant time apart. This constant time (in clock
cycle) is called the initiation interval (II) [21]. Therefore, the
throughput of a unit function is proportional to PF/II when the
number of iterations is large. In the GTM mapping, all
possible PFs and IIs are considered.

3) Region Function

A region function consists of a unit function and an FPGA
buffer as shown in Fig. 5. The II of the unit function should be
equal to the data introduction interval, which is the clock

cycles needed for external memory access (by the buffer and
the unit function) in each window computation. Given a data
introduction interval, it can be proved that there exists a
modulo schedule of the unit function with II equal to it [27].
(Assumption (2) in Section 2.1 was used in the proof.) The
region function iterates the execution of its unit function
through a set of templates (when the design style is generic)
and pixels in a part of image regions. So a region function is
obtained by combining one unit function and one FPGA
buffer, and then being assigned a set of templates and a part of
image regions. Also a region function has to be assigned to a
specific FPGA chip and the memory ports connected to the
chip.

Fig. 5: Region Function

One or more region functions should be selected for each
FPGA chip such that the total execution time is minimal under
the FPGA board resource constraints such as the number of
FPGA chips, the size of FPGA chips, the number of memory
ports, and the width of memory ports. Region functions on all
FPGA chips work independently and in parallel on different
parts of image regions and/or, if any, different templates under
the control of a host program. Note that different region
functions on the same FPGA chip do not share the memory
banks because each region function may need to access the
memory in every clock cycle during the computation.

4) GTM Mapping Complexity

A naïve approach is to enumerate FPGA buffers and unit
function designs and to compare all the combinations so as to
get the final region functions. The complexity of this approach
is very high as shown below.

The number of different FPGA buffers (including non
buffering and internal buffer) for a GTM operation is lower
bounded by η × NPF where η is the number of ways to
distribute memory reads for a window function among
memory ports and NPF is the number of all possible packing
factors. Furthermore η = η1 + η2 where η1 is the number of
ways of read distribution when 1≤NR≤RWIN and η2 is that when
NR=NAP. More specifically, η1 is the number of possible pairs
of vectors (NR(1), …, NR(Np) and (NLB(1), …, NLB(Np)) where
1≤Np≤NMP and 1≤NR≤RWIN, that satisfy the following
conditions:

Unit Function

Window
Function

FPGA Buffer

FPGA

…

MEM … MEM

……

Window
Function

Template Window

Shift Register

Shift Register

Shift Register

Shift Register

Image Line Buffer

Image Line Buffer

Memory Port 2

Memory Port 1

Shift Register

S
e
l
e
c
t
o
r

Active Point
Locations

> TVLSI-00264-2001.R1) <

6

And η2 is the number of vectors (NR(1), …, NR(Np)) where
1≤Np≤NMP and NR=NAP, that satisfy the following conditions:

There are no general formula to express η1 and η2. But the

growth of η2 alone is)()1(−MPN
APNθ .

In the unit function design, all possible PFs and IIs are
considered. For each pair of (PF, II) , the corresponding unit
function design needs to go through a pipeline synthesis
process, which includes scheduling of PF copies of a dataflow
graph, resource sharing and binding, and datapath and
controller generation. For scheduling a general dataflow graph
(not a tree), the minimum-latency resource-constrained
scheduling problem and the minimum-resource latency-
constrained scheduling problem are known to be intractable
[31]. The scheduling in the GTM mapping has to be performed
as many times as the number of all possible pairs of (PF, II) .

As to the building of region functions, given m FPGA
buffers and n unit function designs, there are mn region
functions and the number of sets of region functions to be
considered is 2mn. Note that the image region partitioning, the
processing region binding, and the template bindings have not
been considered yet.

Therefore, the complexity of this naïve approach is very
high, and a much more eff icient approach needs to be
developed. Note that, although the mapping problem is
formulated as a constrained optimization problem, there is no
attempt in getting optimal solutions in this paper due to the
problem complexity. Instead this paper proposes eff icient
algorithms on getting “good” solutions, hopefully “near-
optimal” because of the solution optimality to some sub-
problems involved.

III . MAPPING METHODOLOGY

A. Overall Approach

The methodology of building an near optimal GTM design
is to first enumerate, evaluate, and list enough number of
region functions, i.e., pairs of unit function and FPGA buffer,
and then to select a subset of candidate region functions, bind
them to FPGA chips and memory ports, and partition the total
workload among the region functions. It has three steps.

Step 1: Enumerate all non-dominated memory access
patterns (MAPs). The concept of MAP, as defined later, is a
key to the mapping process because both unit functions and
buffer structures can be determined from a MAP.

Step 2: A set of region functions, one for each non-
dominated MAP, can therefore be obtained. These region
functions can be ranked based on their throughputs, i.e., PF/II .

Step 3: The region function selection and binding and
workload partition are performed so as to minimize the total
execution time.

The first step is an enumeration process that requires an
eff icient algorithm. The second step is a synthesis and
generation process. For each non-dominated MAP, a
corresponding unit function design can be obtained via a
synthesis process and a corresponding FPGA buffer can be
generated. Then areas of the unit function and the buffer can
be estimated. The last step is a combinatorial optimization
process. In the following, each step is described in detail after
the input representations are introduced.

B. Input Representations

The inputs of the GTM mapping process include the FPGA
board specification, the VHDL FPGA component library of
the operators, and the GTM operation specification.

The target FPGA board can be specified with the number of
FPGA chips (NFPGA), the number of memory ports connected
to an FPGA chip (NMP), the width of memory port (WPORT),
and the CLB (or SLICE) count of FPGA (SFPGA).

The VHDL library contains the information about the
operator and storage component VHDL designs, which should
include the area and the timing. The implementation of an
operator in the library can be either pipelined or non-pipelined.
A non-pipelined operator is considered as a pipelined design
with only one stage. The timing of an operator can be
specified by two parameters, clock cycle and clock period. The
area of an operator can be measured by FPGA CLB counts (or
SLICE counts). Because the library component information
may vary for different FPGA famili es, the library is required to
specify the FPGA family. The FPGA buffers are not included
in the library, because they can be generated by an FPGA
buffer generator.

The GTM operation specification includes two parts. One is
the image regions and templates that include the number of
image regions, the number of templates associated with each
image region, and the size of each image region. The other is
the dataflow graph (DFG) of the window function. The DFG
nodes include input nodes, output nodes and operation nodes.
The input nodes include one type of particular nodes called
pixel nodes, which represent the input image pixels at the
active points. Each operation node needs to specify the
resource type that is used to implement the operation. For
example, the window function of Example 1 in Section II can
be represented with a DFG as shown in Fig. 6(a). In this
example, the window function simply sums up nine image
pixel values at active points. The nine circle nodes at the top
represent the nine image data at the active points, which may

 1 ,0)(

)(

1)(...)2()1(

)(

1

1

PLB

Np

p
LBRWIN

PRRR

Np

p
RR

NppN

pNNR

NNNN

pNN

P

P

≤≤≥

=−

≥≥≥≥

=

∑

∑

=

=

=

=

1)(...)2()1(

)(
1

≥≥≥≥

= ∑
=

=

PRRR

Np

p
RR

NNNN

pNN
P

> TVLSI-00264-2001.R1) <

7

come from an FPGA buffer or directly from memory ports.
The cylinder node at the bottom represents a memory write
operation. Fig. 4(b) shows another DFG, in which the hexagon
nodes denote the inputs of template weights at the active
points. A special text format has been developed to describe
such a DFG.

Fig. 6: Two Dataflow Graphs

C. Step 1: Memory Access Pattern Enumeration

For a given pair of PF (packing factor) and II (initiation
interval), a memory access pattern (MAP) includes the
following information.
1. The number of memory ports used (NP), which should be

less than or equal to NMP.
2. The number of memory reads (NR(p)) from each port, p,

(1≤p≤NP) in the II clock cycles. The vector (NR(1),
NR(2),…, NR(NP)) is called the memory read pattern.

3. The number of memory writes (NW(p)) to each port, p,
(1≤p≤NP) in II clock cycles. The vector (NW(1), NW(2),…,
NW(NP)) is called the memory write pattern.

Intuitively, a MAP for a given pair of PF and II can be
represented as a rectangle with NP×II cells. Each cell i s labeled
with R for reading, W for writing, or I for idling. A row of
cells stands for memory accesses of one memory port, and a
column of cells stands for the memory accesses in one
particular clock cycle. For example, when PF=2, II=4, and
NMP=4, there exist many MAPs. One of them is shown below,
which uses two memory ports (NP=2). For this MAP, the
memory read pattern is (3,2) and the memory write pattern is
(1,1).

The GTM operation involves intensive memory accesses

when image is stored off-chip. At each pixel location, the
window function consumes NAP image pixel values. The GTM
FPGA designs that use different MAPs tend to have significant
differences in performance and hardware resource
requirements. Both the FPGA buffer and the unit function
design can be derived based on a MAP (see the next section).
Therefore, the MAP enumeration is a systematic way to
enumerate region functions. However, not all MAPs can lead
to a useful region function.

A MAP can be evaluated with the following four quality

measures. The first is the number of image line buffers (NL)
required by a MAP. When the total number of memory reads
NR by the MAP is less than the number of rows of the template
window (RWIN), NL = RWIN - NR. Larger NL requires more
FPGA area for the buffer. The second is the number of
memory port (NP). Larger NP means more memory banks and
more FPGA input/output pins. The third is the initiation
interval (II) . Larger II corresponds to a lower throughput of the
unit function. The last measure is the memory size requirement
(SM). Lager SM requires more memory space.

Definition: For two MAPs A and B with the same packing
factor, A dominates B if A’s NL ≤ B’s NL, A’s NP ≤ B’s NP, A’s
SM ≤ B’s SM, and A’s II ≤ B’s II .

Therefore, if MAP A dominates MAP B, then the region
function corresponding to A is most likely better than the
region function corresponding to B. Hence, a dominated MAP
can be safely discarded. A MAP not dominated by any other
MAPs is called a non-dominated MAP.

Note that non-dominated MAPs are only a very small
fraction of all MAPs. Algorithms to prune the MAP design
space (remove dominated MAPs without enumeration) and to
obtain all non-dominated MAPs were developed by the
authors of this paper. Their effectiveness was detailed in [28]
where it was shown that, when the pruning was applied to a
particular case (four memory ports and each memory location
storing four pixels), 72 MAPs which were less than 2% of the
MAP space survive for a small problem (a 3×3 template with 9
active points) and 346 MAPs which were less than 0.2%
remain for a bigger problem (a 15×15 template with 30 active
points).

D. Step 2: Region Function Generation

A region function consists of two parts, a unit function and
an FPGA buffer. Section 1 describes the unit function mapping
process and the unit function area estimate. Section 2 presents
the FPGA buffer generation and its area estimation

.
1) Unit Function Mapping and Area Estimate

The inputs for the unit function mapping include FPGA
board information, FPGA library components, a DFG of
window function, and a MAP including PF and II . A scheduled
DFG and a resource table that summarizes the usage of
hardware resources are produced after scheduling and binding.
They can be converted into a datapath and a control table
based on which the unit function area is computed.

The problem of the unit function mapping is closely related
to the well -studied high-level synthesis (HLS) [29-32].
Automated approaches to the fundamental HLS problem
consist of two related constrained optimization problems:
temporal scheduling and spatial binding. HLS techniques have
been widely applied to the compiler (or synthesis tool) designs
on reconfigurable systems. The COBRA-ABS high-level
synthesis system [8] performs globally optimizing high-level
synthesis using simulated annealing, integrating all
partitioning, scheduling, binding, and allocation operations in
one optimization step.

(a) (b)

R R R W

R R W I

II

NP

> TVLSI-00264-2001.R1) <

8

The objective of the unit function mapping in this paper is
to minimize the unit function area under constraints of an
initiation interval (II) , a packing factor (PF), and latency. The
approach in the unit function mapping, unlike that in [8], is to
perform the scheduling and the resource binding separately.
The unit function mapping consists of five sequential tasks:
• Task 1: Schedule one DFG to determine the latency that is

used in Task 2.
• Task 2: Schedule PF copies of the DFGs together using a

list-scheduling algorithm.
• Task 3: Perform the operator sharing and binding.
• Task 4: Generate the datapath and the controller.
• Task 5: Estimate the unit function area.

Each task is described as follows.
Task 2: L ist-Scheduling with PF DFGs: The scheduling

problem in the unit function mapping is to obtain a modulo
schedule of a functional pipeline that allows operator resources
with pipelined implementations. The schedule minimizes the
area requirement subject to latency and II constraints. In order
to reduce the complexity of the scheduling problem, a list-
scheduling algorithm (heuristic) is used. It is based on a
similar algorithm for the functional pipeline scheduling in [31]
where each operator resource is assumed to be non-pipelined.
The computation of resource lower bounds is modified
accordingly.

The initial upper bound of resource instances for each
resource type in the list-scheduling algorithm [31] is one. A
new heuristic on a suitable initial upper bound is used in the
unit function mapping. The initial upper bound are defined by
the new heuristic as follows. Based on the initial scheduling
information from Task 1, for each required resource type,
compute the first control step TS that an operation of this type
is scheduled, and then count the number NOP of operations of
this type that are scheduled at the time interval from TS+1 to
TS+II . The initial upper bound of this type of resource
instances is defined as  IIN OP / . Setting the initial upper

bounds to be ones may not lead to a scheduling result as good
as the new heuristic. A comparison of the two methods can be
found in [26].

Task 3: Operator Shar ing and Binding: Once the DFG
(actually PF copies of the original DFG) is scheduled and the
start time of each node vi is denoted by ti, i=1, 2, …, n, two
operations vi and vj with the same resource type executing at

can share the resource instance if and only if ji kk ≠ . This

condition is easy to check. In the current implementation, the
hardware sharing is always selected whenever the above
condition holds. That means, the area cost of multiplexers is
assumed to be less than that of the hardware being shared
(which may not be true for simple operators). It is also
assumed that one operator can have only one resource type
that implements it. Task 3 produces a resource table according
to the scheduled DFG.

Task 4: Datapath and Controller Generation: The
datapath generation involves the insertion of registers and
multiplexers and the interconnections of components. The
controller generation is to produce a control table that controls
registers and multiplexers to steer data flows in the datapath.
The inputs to the datapath and controller generation are the
scheduled DFG and the corresponding resource table. The
tasks involved include:
1. Building ports: When no FPGA buffer is used, some pixel

nodes need to be merged to share memory ports according
to the MAP.

2. Adding delay registers: The data coming from the FPGA
buffer or the memory ports are assumed to be valid for
only one clock cycle. If an image pixel value is available
at the time step n and is consumed at the time step m, then
m-n registers are needed to delay the datum. Note that
when the FPGA buffer strategy is used, n is 1; otherwise n
is the data arrival time. Also, because the output of an
operator is valid for II clock cycles, if the output is not
consumed after II clock cycles, delaying registers are
needed.

3. Adding node registers: They hold the computation results
of nodes.

4. Adding multiplexers when multiple nodes share the same
resource instance. Note that when the pixel nodes are
grouped, the inputs to some operators are also grouped
accordingly. Thus the number of inputs to the
corresponding multiplexer can be reduced.

5. Generating the datapath in a net list format and the control
table according to the previous results.

Task 5: Unit Function Area Computation
The unit function area can be computed based on the

datapath and the control table as follows. Note that the FPGA
routing area is not considered.
1. For the datapath area, the task is straightforward because

every component in the datapath is from the FPGA
component library and has its area specified. So simply
summing up these component areas is enough. Note that
when the library component is implemented in VHDL
with generic parameters, formula of calculating the areas
according to the parameters are assumed to be available.
Because the CLBs in practice may be shared by different
library components, the datapath area is overestimated in
our approach.

2. For the controller area estimate, the task is more
complicated. The controller is to control the datapath to
compute through a pipelined loop. It goes through three
phases, which are prologue, steady state and epilogue.
Assume that (1) the lengths (clock cycles) of prologue,
steady state and epilogue are n1, n2, and n3 respectively,
(2) the number of iterations through the steady state phase
is n, and (3) one-hot encoding is used in the controller
state encoding. Then at least n1+n2+n3+log2(n) flip-flops
or ((n1+n2+n3+ log2(n))/2 CLBs) are needed for the state
encoding and transitions, where n1+n2+n3 flip-flops are

. somefor 1 where,

and , somefor 1 where,

jjjjj

iiiii

pIIkIIpkt

pIIkIIpkt

≤≤⋅+=
≤≤⋅+=

> TVLSI-00264-2001.R1) <

9

used for the state encoding and log2(n) flip-flops are used
for a counter. Control signals of the controller include
register enable signals and multiplexer selection signals.
Their area estimates can be found in [26].

2) FPGA Buffer Generation and Buffer Area Estimate

Given a MAP, NAP, and sizes of image regions and template
window, the FPGA buffer can be generated as follows. In
order to reduce the initial buffer filli ng time, the number of
line buffers for memory port p, NLB(p) (1≤p≤NP), can be
computed by the minmax decomposition of RWIN-NR with
respect to NP. That is, NLB(1)+…+ NLB(NP)= RWIN-NR and the
maximum values of NLB(1),…,NLB(NP) is minimized. For
example, { 3, 2, 2} is the minmax decomposition of 7 with
respect to 3. Then, when NR = NAP and PF>1, each of the NP
memory ports corresponds to an internal buffer; when 1 ≤ NR
≤ RWIN, the buffer type for each memory port can be
determined as follows.

Buffer Type Condition
Partial NLB(p)=0
Full NR(p)=1, NLB(p)≠0

Hybrid NR(p)>1, NLB(p)≠0
After the buffer structure is determined, the template

window can be partitioned accordingly. Each partition (several
consecutive rows of the original template window)
corresponds to one of the four types of basic FPGA buffers—
Internal Buffer, Full Buffer, Partial Buffer, and Hybrid Buffer.
An entire FPGA buffer can then be generated by combining
those buffers and selectors, if needed. An FPGA buffer for
each memory port can be built i n a component hierarchy. For
example, a full buffer consists of FIFOs (for line buffers) and
shift registers (with parallel outputs for pixels at the template
window), and a FIFO is composed of a dual port RAM and an
address controller, and so on. The sizes of buffer components
can also be computed according to the buffer parameters.

A bottom-up approach is used in estimating the FPGA
buffer area. The area of each base component of the buffer is
computed first, and then the area of a higher layer component
is obtained by adding up areas of all it s components. The
following gives some examples of buffer component area
computation.

Area of Dual Por t RAM : Assume that the depth and the
width of the dual port RAM are n and w, respectively. When
the LUT in a CLB is used for the RAM implementation, the
number of CLBs is w×n/16. When the dedicated BlockRAM
is used, assume that WB is the smallest value of BlockRAM
data width that is not less than w, then the number of
BlockRAMs is n/(NBRAM/WB), where NBRAM is the number of
bits per BlockRAM.

Area of Shift Register (with parallel outputs): Assume
that the depth and the width of the shift register are n and w
respectively. The number of CLBs for this shift register is
n×w/2.

Area of FIFO: The FIFO consists of two parts—Dual Port
RAM and Address Control. Assume that the depth and the

width of a FIFO are n and w, respectively. The control part
consists of two counters with enable and reset. The two
counters use 2×log2(n) flip-flops, and thus log2(n) CLBs.
Then the total area is the sum of both components.

Area of Full Buffer with Packing: The full buffer with
packing consists of FIFOs with equal size and shift registers
with equal size. In order to compute the area, the numbers of
FIFOs and shift registers, the lengths of the FIFO and the shift
register are needed. The full buffer with packing has the
following parameters: the number of columns on image region
(CIMG), the number of rows on template window (RWIN), the
number of columns on template window (CWIM), the packing
factor (PF), and the number of bits on image pixel (NBITS).

The number of shift registers is RWIN×PF. The number of
FIFOs is (RWIN-1)×PF. Let LREG be the length of the shift
register and LFIFO be the length of the FIFO. Then

For example, when PF=1, CIMG=80, and CWIN=4, then

LREG=4 and LFIFO=79. When PF=2, CIMG=80, and CWIN=4, then
LREG=3 and LFIFO=39. It is assumed that CIMG is divisible by
PF. Then the full buffer area is the sum of areas of FIFOs and
areas of shift registers. Note that when PF=1, the computed
area is for the full buffer without packing. The area estimates
for other types of buffers can be obtained similarly (see [26]
for details).

E. Step 3: Region Function Selection and Binding

In the region function selection and binding process, a set of
region functions is selected for each FPGA chip and each
region function is assigned particular memory ports, templates,
and processing regions (consecutive rows of an image region).
The process therefore includes the FPGA chip binding, the
memory port binding, the image region partitioning and the
processing region binding, and the template binding. For an
FPGA chip, i (1≤i≤NFPGA), the region functions RFi,j, 1 ≤ j ≤
q(i), together form the chip design, which has to satisfy an
FPGA area constraint and a memory port constraint. As a
result, for the FPGA chip binding and the memory port
binding, the combinatorial optimization problem can be
formulated as follows.


























≤≤≤

≤≤≤

≤≤≤≤

∑
∑

≤≤

≤≤

FPGA
iqj

MPji

FPGA
iqpj

ji

FPGAji

NiNRFPort

NiantAreaConstrRFArea

iqjNiRFTime

1 ,)(

1 ,)(

Subject to

)}(1 and ,1 |)({max

minimize To

)(1
,

)(\1
,

,

In the above formulation, the objective function is the GTM
computation time, NFPGA is the number of FPGA chips on the
target board, and NMP is the number of memory ports
connected to each FPGA chip. Time(RFi,j) stands for the RFi,j
execution time, Area(RFi,j) for the RFi,j FPGA area, and

.1/
1

−=



 −+

= PFCLand
PF

PFC
L IMGFIFO

WIN
REG

> TVLSI-00264-2001.R1) <

10

Port(RFi,j) for the RFi,j memory ports. The execution time of
the GTM design is the maximum execution time of all RFi,j
execution times because all RFi,j work independently and in
parallel. Note that Time(RFi,j) cannot be obtained before the
processing region binding and the template binding.

Assume there are r image regions, IRs (1≤s≤r), for a GTM
operation and there are rs templates, Ts,b (1≤b≤rs), in each
image region IRs. Assume that the number of rows of each IRs
is ds. A partition of IRs is a set of disjoint subsets, PRs,t
(1≤t≤ps≤ds), of IRs, each with ds,t consecutive rows of the
image, that satisfy

To solve the above region function selection and binding

problem, an eff icient algorithm was developed with the
assumption that region functions have the same clock rate.
Due to the space limitation, only the algorithm outline is given
here (refer to [26] for details).
1. The problem can be simpli fied to the case of a single

FPGA chip by using the same set of region functions for
different FPGAs.

2. The problem can be further simpli fied by decoupling the
memory port binding from the image region partitioning
and processing region binding. When the memory port
binding problem is solved, the image region partitioning
and processing region binding is straightforward.

3. The memory port binding problem can be decoupled into
two problems, a generalized knapsack problem and a
generalized integer partition problem. Either problem can
be solved eff iciently.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, several experiments are performed to learn
the mapping results under different constraints, and to compare
the mapping results of different restricted GTM cases.

A. Mapping Results

In this experiment, Example 1 in Section II is used to
ill ustrate the mapping results. It is assumed that NFPGA=1,
NMP=1, WPORT =16, BDATA=8, NMW=1, RWIN=3, CWIN=4,
CIMG=320, RIMG=200, and NAP=9. In this simple example, the
FPGA board has only one FPGA chip that is connected to only
one memory port. So the FPGA chip can contain only one
region function and thus the whole GTM design consists of
only one region function. There are totally eight non-
dominated MAPs and thus eight candidate region functions as
shown in Table 4. If the FPGA chip has 500 CLBs, then the
fourth region function is the fastest solution that needs 160,000
clock cycles to compute.

For the WildForce FPGA board [33], which can be
connected with a host computer such as a PC via the PCI bus
of the host computer, there are five FPGA chips, each with one
memory port connected, each memory word is 32 bits wide,
and each FPGA has 3,136 CLBs. In this case, NFPGA=5,

NMP=1, WPORT =32, SFPGA=3136, and the GTM mapping tool
produces a region function (PF=4 and II=5) with an area of
1236 that works on the five FPGA chips in parallel. The
computation time is 16,000 clock cycles. It can be observed
that each FPGA chip still has extra area but the region function
is the fastest design (the tool can produce) already. For this
small example, if there were more memory ports, then a bigger
region function with more copies of the window function
and/or multiple region functions could be accommodated and
further speedup could be obtained. Assume that each FPGA
chip has 4 memory ports instead, i.e. NMP=4. Then the GTM
mapping tool produces 43 candidate region function designs
and binds two region functions to each FPGA chip, one with
an area of 1,236 (PF=4, II=5 and NP=1), and the other with an
area of 982 (PF=4, II=2 and NP=3). The computation time is
4,800 clock cycles. The speedup is about 3.3 compared with
the single memory port case. If the FPGA CLB count were
larger than 4,994 (=1,236×4), then the GTM mapping tool
would have selected four copies of the fastest region function
design in each FPGA and obtained a speedup of four.

TABLE 2: ALL CANDIDATE REGION FUNCTION DESIGNS

B. Mapping Results Under Different Constraints

Several experiments are performed to show how the
mapping results change when the FPGA board parameters
change. They include CLB counts, the number of the memory
ports, and the width of the memory data port.

Fig. 7: Mapping Results of Different Memory Port Numbers (WPORT =32)

Area (CLB
Counts)

P
F

II Non-
Dominated
MAP

Buffer Type

Buff UF RF

Cycle

2 3 RWW Full /Packing 568 244 812 96000
2 4 RRWW Hybrid/Packing 394 232 626 128000
1 2 RW Full 458 100 558 128000
2 5 RRRWW Partial/Packing 216 240 456 160000
1 3 RRW Hybrid 291 112 403 192000
1 4 RRRW Partial 120 116 236 256000
2 11 RRRRRR

RRRWW
Internal 32 220 252 352000

1 10 RRRRRR
RRRW

No Buffer 0 110 110 640000

.
1

,∑
=

=
sp

t
sts dd

0

50000

100000

150000

200000

250000

300000

FPGA CLB COUNT (From 300 to 5300 in Every 100)

C
L

O
C

K
 C

Y
C

L
E

Series1

Series2

Series3

Series4

(NMP=4)

(NMP=3)

(NMP=2)

(NMP=1)

> TVLSI-00264-2001.R1) <

11

Again Example 1 in Section II is used. It is assumed that
NFPGA=1, WPORT =32, BDATA=8, NMW=1, RWIN=3, CWIN=4,
CIMG=320, RIMG=200, and NAP=9. Fig. 7 shows the number of
clock cycles of the GTM mapping results. The FPGA CLB
count is in the range from 300 to 5,300. As the CLB count
increases, initially the computation time of the mapping results
for the one memory port case is reduced rapidly. But when the
FPGA CLB count is over 1,300, the computation time stays
constant. That means increasing the FPGA size further does
not help any more. Such an FPGA CLB count is called the
critical CLB number. For the two-memory port case, the
critical CLB number is 2,100. For the three-memory port case,
the critical CLB number is 3,600. For the four-memory port
case, the critical CLB number is 5,000. It can be seen from
Fig. 7 that the speedup of using two memory ports compared
with using one port is roughly 2 when the FPGA is large
enough. Also at some points, adding more memory ports leads
to only marginal speedup. Similar results can be observed
when data port is equal to 16 or 8 bits wide.

Fig. 8 compares the mapping results of different memory
data port widths. When the FPGA CLB counts are large, the
GTM mapping tool always produces a faster GTM design
given a wider memory data port. But the speedup is less than
the ratio of the increase in memory data port widths. This is
because although a wider memory data port allows the packing
of more window function copies in a unit function, the packing
strategy increases the number of memory writes as well and
thus increases the minimal II . On the other hand, when the
FPGA CLB counts are small , increasing the width of memory
data ports may not lead to speed increase. Similar results can
be obtained when the number of ports is equal to 3, 2, or 1.

Fig. 8: Mapping Results of Different Memory Data Port Widths (NMP=4)

C. Mapping Results Under Different Restricted Cases

Human designers often impose some restrictions in their
FPGA designs to simpli fy the design tasks, hoping there is not
much sacrificing in the design optimality. The experiments
here try to provide some explanations to such human
designers’ decisions. Table 3 lists three types of design

restrictions. In the experiments, Example 1 in Section II is
used. It is assumed that NFPGA=1, WPORT =32, BDATA=8,
NMW=1, RWIN=3, CWIN=4, CIMG=320, RIMG=200, and NAP=9.

 TABLE 3: RESTRICTIONS ON GTM MAPPING PROBLEM

Fig. 9 shows the number of clock cycles of the GTM

mapping results under various restrictions on region function
and unit function when the FPGA CLB count is from 800 to
5300.

Fig. 9: Mapping Results Under Restrictions on Region Function or Unit
Function

Note that the results corresponding to no restriction and

Restriction 4 are identical. This means that, for this example,
the mapping results is not degraded by limiting the unit
function design to one memory port or to multiple memory
ports where each is exclusively used in reads or writes. The
mapping results with Restriction 2 have the same execution
times (clock cycles) as those without restrictions when FPGA
CLB counts are very small (less than 900) or very large (larger
than 4,600), but are a littl e slower otherwise. The mapping
results with Restriction 1 have the same execution times (clock
cycles) as those without restrictions when FPGA CLB counts
are very small (less than 900), but are slower otherwise. The
mapping results with Restriction 3 have almost the same
execution times (clock cycles) as those without restrictions
when FPGA CLB counts are large (greater than 3,700), but are
very slow when FPGA CLB counts are small (less than 1,700).

It can be concluded that when FPGA CLB counts are
relatively large (larger than 3,700 for this example),
Restrictions 2, 3, and 4 do not degrade the quality of the GTM

 Design Restriction
1 With only one region function
2

Region Function
With the same region functions

3 With only one memory port
4

Unit Function
With only one memory port or
With multiple memory ports, but each
exclusively for reading or writing

5 Without hybrid buffer
6 Without packing
7

Buffer

With only one memory port

0

10000

20000

30000

40000

50000

60000

70000

FPGA CLB COUNT (From 300 to 5300 in Every 100)

C
L

O
C

K
 C

Y
C

L
E

Series1

Series2

Series3

(32 Bits)

(16 Bits)

(8 Bi ts)

10000

20000

30000

40000

50000

60000

70000

80000

90000

FPGA CLB COUNT (From 800 to 5300 in Every 100)

C
L

O
C

K
 C

Y
C

L
E

Series1

Series2

Series3

Series4

No Restriction or Restriction 4

Restriction 2

Restriction 1

Restriction 3

> TVLSI-00264-2001.R1) <

12

design. In this case, human designers may choose the
constraints corresponding to Restrictions 2 and 3. Limiting
unit function design to one memory port reduces many unit
function design options. Limiting FPGA chip design to the
same region functions reduces the complexity of region
function selection and binding to a linear complexity.

Fig. 10: Mapping Results Under Restrictions on FPGA Buffer

For the same example, Fig. 10 shows the number of clock

cycles of the GTM mapping results under the restrictions on
the FPGA buffer when the FPGA CLB count is from 500 to
5,300. It can be seen that the packing strategy (Restriction 6)
affects the optimality of the mapping results very much.
Therefore, the buffering with packing strategy is valuable for
the speedup of GTM operations. When FPGA area is not too
small (less than 800 CLBs), the buffer with one memory port
(Restriction 7) corresponds to the same mapping result as
those without restrictions. Without hybrid buffer (Restriction
5), the mapping result is not as good as that without the
restriction when FPGA CLB counts are in a range from 3,400
to 4,000. Note that the hybrid buffer could affect the optimal
mapping result more if the template window had more rows.

Note that the availabilit y of the mapping tool enables the
evaluation of board parameters with respect to a GTM
application requirement. It provides useful information when
a user is trying to devise an “optimal” structure of FPGA
board, such as the number of FPGA chips, the number of
external memory ports, the memory word width, and the size
of FPGA, for a given performance requirement of a GTM
operation. How to derive an optimal structure systematically
is an interesting issue.

V. CONCLUSIONS AND FUTURE WORKS

The GTM operations cover a useful set of image processing
algorithms, and their speedup by using reconfigurable
computers has been shown in many research papers. However,
the human design process for GTM operations is usually

tedious even without exploring the whole design space and the
compiler-like software tools for reconfigurable computing are
far from eff icient. Therefore, it is quite desirable to map this
type of applications onto reconfigurable computers
automatically with some degree of design space exploration.

In this research, the GTM operations are characterized and
formulated as a special nested loop computation. GTM
parallelism is explored by pipelining and by applying multiple
copies of hardware units, such as multiple window functions in
a unit function and multiple region functions in an FPGA chip.
Various FPGA buffers are presented which provide design
options for the tradeoff among the FPGA computation time,
the FPGA area, and the memory size requirement. The design
options also exist in circuit synthesis, FPGA chip and memory
port binding, and image region partitioning and binding. The
overall solution strategy is to enumerate the design space of
basic pipelined FPGA design units and then select an optimal
combination from these basic FPGA design units.

The enumeration process of the FPGA buffers and the
computation cores is performed through the memory access
pattern enumeration. Effective pruning algorithms are created
to obtain all the non-dominated memory access patterns. Then
the FPGA buffer is generated according to the memory access
pattern, and the datapath and controller of the pipelined
computation core circuit is obtained through the high-level
synthesis under the constraints of the memory access pattern.
Finally an optimal combination from basic design units is
selected by a combinatorial optimization process of FPGA
chip and memory port binding, and image region partitioning
and binding.

The GTM mapping procedures and algorithms developed in
this work are the basis of an automatic GTM software design
tool that can produce a near optimal design, boost designers’
productivity, and improve design portabilit y. The current
design tool can produce VHDL codes for the mapping results
targeting the WildForce FPGA board.

The GTM mapping on reconfigurable computers involves a
wide range of research topics. Many assumptions were made
so as to limit the scope of the research. Relaxing some of these
assumptions will certainly enlarge the application range of the
mapping methodology. Several limitations and possible future
works are listed in the following.

1. The FPGA design area estimates should be improved.
Currently routing areas are not considered at all . Further study
is needed. In our current mapping tool, an FPGA area
utili zation ratio is used to overcome the inaccurate area
estimate. After FPGA placement and routing, if the design
does not fit, the utili zation ratio is reduced so as to force the
tool to produce a smaller design. The process is iterated until
a small enough design is found.

2. The clock frequency of a design should be considered in
the optimization process. Two technical issues are involved.
(1) How to accurately estimate the clock frequency without
going through placement and routing? (2) How to modify the
optimization process to incorporate the frequency estimates?

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

FPGA CLB COUNT (From 800 to 5300 in Every 100)

C
L

O
C

K
 C

Y
C

L
E

Series1

Series2

Series3

Series4

No Restriction

Restriction 5

Restriction 6

Restriction 7

> TVLSI-00264-2001.R1) <

13

Because the problem domain is limited to GTM, there is a
chance to come out with rules of thumbs about frequency
estimates.

3. Hardware sharing overhead needs to be considered in
terms of (multiplexer) area and design clock frequency. In the
current implementation, hardware sharing is always performed
whenever possible, even when the shared hardware has less
area cost than that of the added multiplexers. A potential
solution is to check the area overhead and add a clock cycle
time constraint. Since routing delays can be expected to be a
problem for the time constraint, further study is needed.

4. The pipeline synthesis of the unit function currently is
performed in a very limited way. It should be enhanced in the
following aspects. First, the assumption that each operator in a
dataflow graph has only one implementation should be
removed. This will add another dimension to the design space
and make the synthesis much more complicated. Second, the
register sharing is not considered in the current synthesis
algorithm. Third, the conventional compiler optimization
techniques for a dataflow graph, such as constant folding,
operator reduction, etc, are not considered. When the
templates are fixed, the constant folding task is expected to be
performed by the users through providing a simpli fied DFG.

There are many other limitations in the current
implementation of the GTM mapping tool. For example, the
window function is required to be template permutation-
invariant. The template permutation is to change the ordering
of pairs of the template weight and the image value at the same
template locations. A window function is said to be template
permutation-invariant if any template permutation does not
change the value of the window function. In Example 1 in
Section II a template permutation is to change the ordering of
the nine pixels. Since it does not change the sum, the
summation (the window function) is template permutation-
invariant. This property comes into play when examining non-
buffering cases. In these cases, the pixel nodes are grouped
and are ordered in each group. There is a need to compute the
locations of image pixels at all active points when the memory
controller read the image data. With the template permutation-
invariant property the memory controller can read image pixels
at all active points in any order as long as using the same order
as the template weights. This limitation simpli fies the
implementation of the memory controller, and can be fixed
without diff iculty.

REFERENCES
[1] J.S.N. Jean, X. Liang, B. Drozd, and K. Tomko, "Accelerating An IR

Automatic Target Recognition Application with FPGAs," in IEEE
Symposium on Field- Programmable Custom Computing Machine, pp.
290-291, April 1999.

[2] K. Chia, H. Kim, S. Lansing, W. Mangione-Smith, and J. Villasenor,
"High-Performance Automatic Target Recognition through Data-
Specific VLSI,'' in IEEE Transactions on VLSI Systems, Vol. 6, No. 3,
pp. 364-371, 1998.

[3] M. Rencher, and B. L. Hutchings, "Automated Target Recognition on
Splash 2," in IEEE Symposium on FPGA Custom Computing Machines,
pp. 192-200, April 1997.

[4] S. Singh and R. Slous, "Accelerating Adobe Photoshop with the
Reconfigurable Logic,'' in IEEE Symposium on FPGA Custom
Computing Machines, pp. 236-244, 1998.

[5] W.E. King, T.H. Drayer, R.W. Conners, and P. Araman, "Using
MORRPH in an Industrial Machine Vision System,'' in IEEE
Symposium on FPGA Custom Computing Machines, pp. 18-26, 1996.

[6] Scott Hemmert and Brad Hutchings, “An Application Compiler for
High-Speed Binary Image Morphology” , in IEEE Symposium on FPGA
Custom Computing Machines, 2001.

[7] C. Thibeault and G. Begin, "A Scan-Based Configurable,
Programmable, and Scalable Architecture for Sliding Window-Based
Operations," in IEEE Transactions on Computers, VOL. 48, NO. 6,
pp.615-627, 1999.

[8] [8] A. A. Duncan, "An Overview of the COBRA-ABS High Level
Synthesis system for Multi-FPGA Systems," in IEEE Symposium on
FPGA Custom Computing Machines, pp. 106-115, April 1998.

[9] Q. Wang, etc, "Automated Field-Programmable Compute Accelerator
Design Using Partial Evaluation," in IEEE Symposium on FPGA
Custom Computing Machines, pp. 145-154, April 1997.

[10] J. M. Arnold, D. A. Buell , and E. G. Davis, "Splash 2," in Proc. 4th Ann.
ACM Symp. Parallel Algorithms and Architectures, pp. 316-322, 1992.

[11] E. Waingold, M. Taylor, et al, "Baring it all to Software: Raw Machines
an attached processing unit," in IEEE Computer, pp. 86-93, September
1997.

[12] M.B. Gokhale, J.M. Stone, "NAPA C: Compiling for a Hybrid
RISK/FPGA Architecture," in IEEE Symposium on FPGA Custom
Computing Machines, pp. 126-135, April 1998.

[13] M.B. Gokhale and J.M. Stone, "Automatic Allocation of Arrays to
Memories in FPGA Processors with Multiple Memory Banks," in IEEE
Symposium on Field Programmable Custom Computing Machine, pp.
63-69, 1999.

[14] D. C. Cronquist, etc, "Specifying and Compiling Applications for
RaPiD," in IEEE Symposium on FPGA Custom Computing Machines,
pp. 116-125, April 1998.

[15] C. Ebell ing, "Mapping Application to the RaPid configurable
Architecture," in IEEE Symposium on FPGA Custom Computing
Machines, pp. 106-115, April 1997.

[16] T.J. Callahan, J.R. Hauser, and J. Wawrzynek. “The Garp Architecture
and C Compiler,” IEEE Computer, April 2000.

[17] M. Hall , P. Diniz, K. Bondalapati, H. Ziegler, P. Duncan, R. Jain and J.
Granacki, "DEFACTO:A Design Environment for Adaptive Computing
Technology," in Proceedings of the 6th Reconfigurable Architectures
Workshop (RAW'99), Springer-Verlag, 1999.

[18] B. Draper, W. Bohm, J. Hammes, W. Najjar, R. Beveridge, C. Ross, M.
Chawathe, M. Desai, J. Bins, “Compiling SA-C Programs to FPGAs:
Performance Results,” International Conference on Vision Systems,
Vancouver, p. 220-235, July 7-8, 2001.

[19] X. Liang, J.S.N. Jean and K. Tomko, "Data Buffering and Allocation in
Mapping Generalized Template Matching on Reconfigurable Systems,"
The Journal of Supercomputing, Special Issue on Engineering of
Reconfigurable Hardware/Software Objects, 19(1):77-91, 2001.

[20] B. Bosi, G. Bois and Y. Savaria, "Reconfigurable Pipeline 2-D
Convolvers for Fast Digital Signal Processing," in IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, pp. 299-308, Vol. 7, No.
3, 1999.

[21] B. R. Rau and C. D. Glaeser, "Some scheduling techniques and an
easily schedulable horizontal architecture for high performance
scientific computing," Fourteenth Annual Workshop on
Microprogramming, pp. 183-198, October 1981.

[22] A. E. Charlesworth, "An approach to scientific array processing: The
architectural design of the AP-120B/FPS-164 family," in Computer,
14(9):18-27, September 1981.

[23] M. Lam, "Software Pipelining: An effective scheduling technique for
VLIW machines," in Proceeding of the ACM SIGPLAN'88 Conference
on Programming Language Design and Implementation, pp. 318-328,
June 1988.

[24] M. Weinhardt and W. Luk, "Memory Access Optimization and RAM
Inference for Pipeline Vectorization," in Proceedings of FPL'99, pp.61-
70, 1999.

[25] P. Diniz and J. Park, "Automatic Synthesis of Date Storage and Control
Structures for FPGA-based Computing Engines," in IEEE Symposium
on Field Programmable Custom Computing Machines, 2000.

> TVLSI-00264-2001.R1) <

14

[26] X. Liang, “Mapping of Generalized Template Matching on
Reconfigurable Computers,” PhD Dissertation, Wright State University,
December, 2001.

[27] X. Liang and J. Jean, “Memory Access Scheduling and Loop
Pipelining” , Proceedings of International Conference on Engineering of
Reconfigurable Systems and Algorithms” , pp. 183-189, Las Vegas,
Nevada, USA, June 2002

[28] X. Liang and J.S.N. Jean, "Memory Access Pattern Enumeration in
GTM Mapping on Reconfigurable Computers," in Proceedings of the
International Conference on Engineering of Reconfigurable Systems and
Algorithms, pp. 8-14, Las Vegas, Nevada, USA, June 2001.

[29] Wayne Wolf, Andres Takach and Tien-Chien Lee "Architectural
Optimization Methods for Control-Dominated Machines", in Paul
Composano and Wayne Wolf, editors, High-Level VLSI Synthesis,
pp.231-254, Kluwer Academic Publishers, 1991

[30] P.G. Paulin and J.P. Knight, "Force-Directed Scheduling for the
Behavioral Synthesis of ASIC's", in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and System, Vol. 8, No. 6, pp. 661-
679, July 1989

[31] Giovanni de Micheli, "Synthesis and Optimization of Digital Circuits",
Mcgraw-Hill , Inc., 1994

[32] D. Gajski, N. Dutt, A. Wu and S. Lin, "High-Level Synthesis--
Introduction to Chip and System Design", Kluwer Academic Publishers,
1992

[33] “WildForceTM Reference Manual” , Annapolis Systems, Inc.

Xuejun L iang (M’02) received his Ph.D. degree in computer
science and engineering from Wright State University, Ohio,
USA, in 2001, and his M. S. degree in mathematics from Beiji ng
Normal University, Beiji ng, China, in 1985.
 He was a graduate research assistant at Wright State

University from 1997 to 2001. He served as an instructor, an assistant
professor, and an associate processor, respectively, in the Department of
Mathematics of Beiji ng Normal University from 1985 to 1997. Currently he
is an assistant professor in the Department of Computer Science of Jackson
State University, Jackson, MS 39157, USA. His current research interests
include adaptive computing system, FPGA application, and computer
architecture.

Jack Shiann-Ning Jean received the B.S. and M.S. degrees
from the National Taiwan University, Taiwan, in 1981 and
1983, respectively, and the Ph.D. degree from the University of
Southern California, Los Angeles, C.A., in 1988, all in
electrical engineering. Currently he is a Professor in the

Computer Science and Engineering Department of Wright State University,
Dayton, Ohio. His research interests include parallel processing,
reconfigurable computing, and machine learning.

