
Incorporating PDC Modules into Computer Science Courses at Jackson State
University

Ali Abu El Humos, Sungbum Hong, Jacqueline Jackson, Xuejun Liang, Tzusheng Pei and Bernard Aldrich
Department of Computer Science

Jackson State University
Jackson, MS 39217, USA

{ali.a.humos, sungbum.hong, jacqueline.m.jackson, xuejun.liang, tzusheng.pei}@jsums.edu,
bernard.m.aldrich@students.jsums.edu

Abstract— The Computer Science Department at Jackson
State University (JSU) is updating its curriculum according to
the new ABET guidelines. As part of this effort, the computer
science faculty members have integrated modules of the
NSF/IEEE-TCPP Curriculum Initiative on PDC (Parallel and
Distributed Computing) into department-wide core and
elective courses offered on fall 2014. These courses are: csc 119
Object Oriented Programming (core), csc 216 Computer
Architecture and Organization (core), csc 312 Advanced
Computer Architecture (elective), csc 325 Operating Systems
(core), csc 350 Organization of Programming Languages (core)
and csc 425 Parallel Computing (elective). The inclusion of the
PDC modules was gradual and light weighted in the low level
courses and more aggressive in the high level courses. Csc 119
Object Oriented Programming provided students with an early
introduction to Java Threads: how to create and use. In csc
216 Computer Architecture and Organization students learned
about GPUs and were asked to write simple problems using
CUDA. Csc 312 Advanced Computer Architecture covered
Instruction level and Processor level Parallelism. For csc 325
Operating Systems, mutual exclusion problems and Parallel
Computing and Algorithms were introduced. In csc 350
Organization of Programming Languages, students learned
about the implementation of threads in Java. Csc 425 Parallel
Computing is an advanced study of parallel computing
hardware and software issues. Assessment results showed that
student perception of PDC concepts was satisfactory with some
weakness in writing parallel code. However, students were very
excited and motivated to learn about PDC. We were also able
to share our experience with the Computer Engineering
Department at JSU. New PDC modules will be integrated into
some of their courses next fall and spring semesters. Our
findings were made available on the Center for Parallel and
Distributed Computing Curriculum Development and
Educational Resources (CDER) website. In this paper, we will
describe our experience of incorporating PDC modules into the
aforementioned computer science courses at JSU.

Keywords-PDC modules; Computer Science; Jackson State
University.

I. INTRODUCTION
Jackson State University (JSU) has a student population

where over 90% are from under-represented groups. This
NSF/IEEE-TCPP Curriculum Initiative [1] award therefore
had a direct impact on minorities, specifically in the

Computer Science field. Not only did this award help
integrate PDC topics into the computer science curriculum at
JSU, but also it better prepared our graduates for their future
careers where PDC knowledge is a must to know.

The computer science new curriculum at JSU is a 125
credit-hour program in which there are 57 in computer
science. Some advanced computer architecture topics are
moved to elective courses. If some students choose not to
take these elective courses, this may prevent them from
learning about important PDC topics such as pipelining,
superscalar architectures, multiprocessors and multi-core
processors and GPU programming. Consequently, it is
crucial to revisit the contents of every offered computer
science course in order to smoothly integrate PDC topics into
these courses.

II. EARLY ADOPTING COURSES
In order to make sure that our students will be exposed to

various PDC topics, five computer science professors
participating in the Early Adopting Program updated their
courses with different PDC modules. These courses were:

CSC 119 Object Oriented Programming: This course
covers problem solving methods and algorithm development;
definition of language syntax and semantics of JAVA; and
developing the ability to design, code, debug, document and
successfully execute programs. This course builds upon the
topics of CSC 118 (Fundamentals of Computer Science) and
covers inheritance, polymorphism, interfaces, exception
handling, streams and file input/output, recursion, dynamic
data structures (linked lists, stacks, queues, hash tables,
graphs, trees) and associated algorithms. Lecture topics were
reinforced weekly with laboratory assignments. To support
parallel computing, Java has the Thread class and the
Runnable interface, and it also provides rich primitives with
the java.util.concurrent packages, which include the fork/join
framework. Students explored these features in Java for
parallel computing.

CSC 216 Computer Architecture and Organization: This
course covers the basic concepts of computer architecture
which includes machine level representations of data,
computer arithmetic, instruction set architecture and
assembly language, datapath and control, memory system,
and bus architectures and I/O devices. A new PDC module
was added to this course to introduce students to multi-core

processors and GPU hardware. Also, throughout the course,
parallelism at different levels was discussed.

CSC 312 Advanced Computer Architecture: This course
is becoming an elective course under the new curriculum. It
covers various advanced topics of the PDC curriculum such
as instruction level parallelism: pipelining and superscalar
architectures, processor level parallelism: array processors,
multi-processor and multi-computer systems. Techniques to
reduce instruction pipeline stalls and set associative caches
are analyzed. Quantitative approaches of computer
performance are emphasized. A new PDC module was added
to this course to introduce students to benchmarks and how
they can be used to compare the performance of various
parallel systems.

CSC 325 Operating Systems: This course introduces the
major concepts of process communication and
synchronization, protection, performance measurement, and
causes and evaluations of the problems associated with
mutual exclusions and process synchronization among
concurrent processes. It also introduces and analyzes various
operating systems in terms of processor, memory, device,
information, and distributed systems management. A PDC
module was incorporated into this course to extend process
synchronization issues to parallel programming concepts.
With this module, the course provided students with parallel
thread programming opportunities.

CSC 350 Organization of Programming Languages: This
course is a study of the organization and specification of
programming languages. It covers several issues in language
design, including typing regimens, data structure models,
control structure models, abstraction, virtual machines,
language translation, interpreters, compiler design, lexical
analysis, parsing, symbol tables, declaration and storage
management, code generation and optimization techniques.
In this course, after a brief review of the features in Java for
supporting parallel computing (taught in CSC 119), parallel
programming assignments were given for gaining hands-on
experience. Generic concepts in parallel computing were also
introduced.

CSC 425 Parallel Computing: This is a newly developed
elective. It is a study of the hardware and software issues in
parallel computing. It is a theoretical and practical survey of
parallel processing, including a discussion of parallel
architectures, parallel programming languages, and parallel
algorithms. Students will write programs for multiple parallel
platforms in a higher-level parallel language. From this
course, the students will learn how to write parallel programs
on three different parallel architectures: i) shared memory
model- thread programming; ii) Cluster- Message Passing
Computing; and iii) Multicore- GPU Programming. Due to
low enrollment, this course was not offered in Fall 2014 and
will be offered again in Fall 2015.

III. EVALUATION
In order to get initial feedback from students, we

conducted a survey early in the fall semester to ask
undergraduate students (Seniors, Juniors, Sophomores and
Transfer students from local community colleges) about their
knowledge and interest of PDC. Table I is a summary of the

Table I. Survey Questions and Results

Question Average
Score

Please, rate your current knowledge of
PDC. 1.4

Please, rate the breadth of PDC topics
covered in the computer science

curriculum at JSU
1.4

Please, rate the depth of PDC topics
covered in the computer science

curriculum at JSU.
1.5

Please, rate your overall learning
experience of PDC at the computer

science department at JSU.
1.5

Will you be interested in pursuing a
career that requires PDC knowledge? 2.5

Will you be interested in registering for
Advanced PDC classes if offered during

fall or spring semesters?
3.0

survey questions and results where a score of 4 is excellent
and a score of 1 is poor. The survey results reflect the dire
need to emphasize PDC topics across the computer science
curriculum. It also shows that our students are motivated to
learn PDC topics. These facts are also reflected in the
following student comments reported in the survey:

• “I do not have knowledge of PDC. It would be
helpful if we learned about this topic in our classes.
This could help with strengthening our
programming skills. Activities or projects during
class would be helpful”.

• “I hope that there would be mentoring sessions with
faculty to help students address the issue of being
able to learn on our own different languages and
principles of Computer Science”.

• “One could provide real world Applications of
PDC. If it is implemented in classes, make sure that
you provide real world application as well as
theory. The combination of both solidifies its
importance and builds interest”.

• “I think it is very relevant, but at the same time, I do
not know anything about it. I just know that our
curriculum is already filled with classes, and it is
tough trying to manage those classes”.

• “The topic should be touched in classes at every
level. For a topic like this, the students should start
learning about it as freshmen so that they can
increase understanding of it over time”.

• “PDC careers should be discussed more and more.
More hands on activities”.

• “We really did not talk about PDC in my
undergraduate program. I would love to see it
offered for students”.

At the end of the fall semester, we assessed our student
perception of PDC topics. It is included in the Faculty
Course Assessment Report (FCAR) submitted every

semester to the department required for ABET program
assessment.

Table II. Assessment Results

Course Name [EX, EF, M, U]
Vector

Weighted
Average

CSC 119
Object

Oriented
Programming

[3, 0, 0, 1] 2.87

CSC 216
Computer

Architecture
and

Organization

[3, 0, 1, 1] 3.00

CSC 312
Advanced
Computer

Architecture

[2, 4, 3, 1] 2.70

CSC 325
Operating
Systems

[8, 5, 1, 24] 1.92

CSC 350
Organization of
Programming

Languages

[2, 1, 1, 0] 3.25

Table III. PDC Topics used for Assessment

Course Name PDC Topics
CSC 119 Object

Oriented
Programming

Concurrent activities in
Java, Java thread.

CSC 216
Computer

Architecture
and

Organization

GPU Architecture and
Computing, Simple CUDA

programs.

CSC 312
Advanced
Computer

Architecture

Flynn’s Taxonomy,
Instruction Level and

Processor Level Parallelism,
Benchmarks.

CSC 325
Operating
Systems

Algorithms for mutual
exclusion, Parallel

Computing and Algorithms.
CSC 350

Organization of
Programming

Languages

Understanding fundamental
concepts in threads,

Reading programs with
threads.

For each assessment tool, every instructor calculated the
percentage score of the students and categorized them into
the following categories based on the percentage scores:

Excellent (EX – score ≥ 75%), Efficient (EF – score ≥
50% and < 75%), Minimal (M – score ≥ 25% and < 50%)
and Unsatisfactory (U – score < 25%). The average score
(ranges from 1 to 4) for each Course Outcome is the
weighted average of the values for its [EX, EF, M, U] vector,
with the weights being 4 for EX, 3 for EF, 2 for M and 1 for
U. Table II shows the assessment results for the five classes.
Table III summarizes the PDC topics used for assessment in
these courses. For specific questions and assignments, please
check the CDER website for these courses [2].
In general, students’ perception of PDC topics was good
except for those covered in the Operating Systems class
which has a large student enrollment since both computer
science and engineering students take this class together. All
instructors indicated that most students were very interested
and motivated to learn PDC topics. Some instructors were
short on time to cover more PDC topics, and will figure out
some ways to accommodate more time to cover these topics
in future offerings of these courses.

IV. CONCLUSIONS AND FUTURE WORK
PDC modules were implemented in the aforementioned

courses. A presentation about PDC education for ACM
computer science students was organized early in the fall
semester. Students shared their views on how to integrate
PDC into the computer science curriculum and had
constructive feedback from students and faculty. Two
graduate students were motivated about PDC education and
attended the EduHPC 14 workshop, where we presented
some of our early experience of PDC education at JSU [3].
Assessment data was collected at the end of the fall semester.
The data showed that students were comfortably able to learn
PDC concepts and were motivated by these topics to pursue
a career or do research in the area of PDC. To support our
students with adequate PDC resources, a Tesla K40C, GPU
hardware granted by NVIDIA Inc. [4] has been added to the
Distributed Computing Laboratory. The GPU contains 2880
CUDA cores with 12 Giga Bytes of memory on the Tesla
K40 and 400 GB HDD and another 192 CUDA cores on a
Quadro 2000 GPU card. Combined, they provide adequate
power to support simulations requiring high-power
computing capacity. Matlab [5] Parallel Computing Tool box
will soon be available for our students. Internal university
funding is also sought to continue this project in the coming
semesters.

REFERENCES
[1] “NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed

Computing – Core Topics for Undergraduates.” [Online]. Available
at: http://www.cs.gsu.edu/~tcpp/curriculum/.

[2] http://www.cs.gsu.edu/~tcpp/curriculum/?q=node/21183.
[3] A. Abu El Humos, S. Hong, J. Jackson, X. Liang and T. Pei,

“NSF/TCPP Early Adopter Experience at Jackson State University
Department of Computer Science”. Workshop on Education for High-
Performance Computing EduHPC-14, in conjunction with SC-14:
The International Conference for High Performance Computing,
Networking, Storage, and Analysis, New Orleans, LA, November 16-
21, 2014.

[4] http://www.nvidia.com.
[5] http://www.mathworks.com.

	I. Introduction
	II. EARLY ADOPTING COURSES
	III. EVALUATION
	IV. CONCLUSIONS AND FUTURE WORK
	References

