Data Buffering and Allocation in Mapping Generalized
Template Matching on Reconfigurable Systems

Jack Jean, Xuejun Liang, and Karen Tomko
Department of Computer Science and Engineering
Wright State University
Dayton, OH 45435, USA

Abstract Image processing algorithms for 2D dig-
ital filtering, morphologic operations, motion esti-
mation, and template matching involve massively
parallel computations that can benefit from wus-
ing reconfigurable systems with massive field pro-
grammable gate array (FPGA) hardware resources.
In addition, each algorithm can be considered a
special case of a “generalized template matching”
(GTM) operation. Application performance on re-
configurable computer systems is often limited by
the bandwidth to host or off chip memory. This
paper describes the GTM operation and character-
izes the data allocation and buffering strategies for
GTM operation on reconfigurable computers. Sev-
eral mechanisms that support different levels of par-
allelism are proposed and summarized in the paper.

Keywords: Template Matching, Configurable
Computing, Field Programmable Gate Array
(FPGA), Reconfiguration

1 Introduction

Computing systems that use co-processor
boards based on field programmable gate ar-
ray (FPGA) chips may adapt their hardware
resources to the application requirements. The
technology has been demonstrated for the ac-
celeration of various applications, such as au-
tomatic target recognition (ATR)[3, 7], neu-
ral networks[l], Adobe Photoshop[5], Solar
Polarimetry[6], and machine vision[4].

Image processing algorithms for 2D digital
filtering, morphologic operations, motion es-
timation, and template matching share some

common properties. They all involve massively
parallel computations that can benefit from
using massive FPGA hardware resources. In
addition, each algorithm can be considered a
special case of a generalized template matching
(GTM) operation. As a result, designing opti-
mal implementations for these operations can
be characterized similarly and be solved sys-
tematically. A GTM operation consists of two
steps as illustrated in Figure 1.

x@—’@ o,
O hE B8 T i STEP2

|

i

| !

&% —H ——— ; DaaSummay !
. [

|

I

= i (Minimum/Max ;
L. ! Cdculation) i
TR LU
STEP 1 Generdlized
Convolution/Correlation
with TemplateyMasks

Figure 1: Generalized template matching

In the first step of the GTM, the input data
are “convolved” (or “correlated”) with a set of
masks, or templates, to produce a set of con-
volved data. Note that an individual convolu-
tion may involve a sequence of masks and the
computation associated with each mask may
be generalized convolution/correlation as used
in morphologic operations and in motion esti-
mation. In the general case, the computation
associated with each mask can simply be a pre-

specified function on a number of pixels indi-
cated by the mask. In the second step of the
GTM, the convolved data are “summarized”
which sometimes involves the calculation of the
smallest value among a set of numbers. Each
of the above mentioned algorithms is a GTM
in the following sense.

1. Template matching: there is a set of masks
in the first step. The second step summa-
rizes each convolved data and chooses the
best template based on some criteria. For
example, the maximal value inside a con-
volved data area may be used to indicate
the fitness of a template and the best tem-
plate may be defined as the one that fits
best, or equivalently, the one that has the
largest maximal value. Template match-
ing is frequently used in automatic target
recognition applications|[3, 7].

2. Two-D digital filtering: convolution of the
masks and the image is used in the first
step and there is no second step. If a
sequence of cascaded filters is used, then
there is a sequence of masks. If a fil-
ter bank is used, then there are multiple
masks in the first step.

3. Morphologic operations: there is a se-
quence of masks in the first step and there
is no second step. Generalized convolu-
tion is used for the computation where the
multiplication and addition operations of
a convolution are replaced with addition
and maximal/minimal, respectively.

4. Motion estimation: there is a set of masks
in the first step and a generalized corre-
lation is used for the computation. The
second step involves the calculation of the
displacement vector for each mask. In this
case, the set of masks may be parts of a
previous image frame and they may have
related values. In addition, the contents of
masks may not be known until run time[2].

This paper characterizes the mapping of the
GTM operation on reconfigurable computers

in terms of data buffering and allocation. Sev-
eral mechanisms that support different levels
of parallelism are proposed and summarized in
the paper. Section 2 describes the mapping of
a single mask to an FPGA chip with an ex-
ternal SRAM. The mapping of multiple masks
to multiple FPGA chips is then described in
Section 3.

2 Mapping Single Mask to
Single FPGA Chip

The following notation is used in this paper.
For the GTM, suppose a mask is applied to an
image. The image has r rows and ¢ columns
and each image pixel has b bits of precision.
The mask has p rows and ¢ columns. In ad-
dition the mask has w number of active points
which include all the points necessary for the
mask computation. (Usually a mask contains
a pattern and the active points of a mask form
the pattern.)

In this section, the FPGA board is assumed
to have only one FPGA chip which is directly
connected to one or multiple external memory
modules. The image data may be sent from
the host processor to the FPGA chip either
directly or through the memory modules. The
memory (or host) bandwidth to the FPGA can
be a severe bottleneck for some applications.

When no image row is buffered inside the
FPGA chip, each pixel needs to be read from
the external memory modules (or the host pro-
cessor) w times. Since w is usually much larger
than one, it is desirable to buffer enough num-
ber of image rows inside the FPGA chip so
that each image pixel needs to be read only
once. When the buffering of image data re-
quires too much FPGA space, it becomes nec-
essary to store image off chip and to access each
image pixels multiple times. The following dis-
cussion includes three cases: (1) full buffering
of image rows internally, (2) no internal buffer-
ing of image rows, and (3) a partial buffering
scheme.

2.1 Full Image Row Buffering

vl Q0L 2 3456

o | o B C|cHcH c+3 et} | ¢th CHo| o
NN Vavoiverzive: FEEEEEK

Figure 2: Pixels that need to be buffered for a
3 x 4 mask

Figure 2 shows a 3 x 4 mask being applied
to an image where the mask covers twelve pix-
els,0,1,2,3,¢c,c+1,c+2, ¢c+3, 2, 2¢+ 1,
2c+2, and 2¢c+ 3. If the pixels enclosed by the
bold lines are buffered inside the FPGA chip,
moving the mask one pixel right requires only
the reading of one extra pixel, i.e., pixel 2c+4,
from the external memory (or the host proces-
sor). In other words, when the FPGA chip can
buffer ¢(p — 1) + ¢ pixels, the image pixels fed
into the chip can be fully reused internally and
each external pixel needs to be read exactly
once. That would greatly reduce the memory
bandwidth requirement.

Function-Level Parallelism The other ad-
vantage of internal buffering the image rows
is that, when all the pixels required to evalu-
ate one mask are available on chip, the paral-
lelism at the function evaluation level can be
explored. The adder tree used in [7] is an ex-
ample.

FPGA Buffers On Xilinx FPGA chips,
there are three different mechanisms that can
be used to buffer image rows.

1. Use the flip-flops in CLBs (Configurable
Logic Blocks). One CLB can store two
bits and those two bits can be accessed
in parallel. This mechanism is good for
storing the p- ¢ pixels in a mask area so to
support the function-level parallelism[7].

2. Use the RAMs that are based on function
generators in CLBs. One CLB can store
32 bits without parallelism in accessing.
This mechanism can be used to store the
(p—1)-(c—q) pixels that are not currently
used for the template.

3. Use the BlockRAM, which is available
only on Xilinx Virtex chips. The
XCV1000 chip has 32 blocks, each being
a dual-ported 4,096 bit RAM. Therefore
that chip supports the parallel accessing
of 64 ports where each port can be up to
16 bit wide. The BlockRAM can be used
in two ways to buffer pixels.

e If CLB flip-flops are available to
buffer the p - ¢ pixels in a mask
area, the BlockRAM can be used as
a buffer so that in each clock cycle
p — 1 pixels are read from the Block-
RAM and one external pixel fetched
is written to the BlockRAM. One ex-
ample with a 3 x 4 mask is shown in
Figure 3(a) where consecutive pixels
at the same column (such as 0, ¢, and
2¢) are assigned to form a vector of
stride one. Here the stride value of a
vector is the difference of block num-
bers between two consecutive vector
elements. That guarantees the paral-
lel reading of the p — 1 pixels. In the
diagram pixels 0, 1, 2, 3 in the Block-
RAM are labeled with parentheses
indicating that those pixels can be
(and could have been) overwritten.
Note that consecutive pixels at the
same row (such as ¢, ¢+ 1, ¢ + 2,
¢+ 3, ...) could have been assigned
to the same block.

e If no CLB flip-flop is used for buffer-
ing pixels, the ¢(p — 1) + ¢ pixels
should be arranged so that the p - ¢
pixels in a mask area can always be
accessed from different ports. This
can be done by (1) distributing con-
secutive pixels at the same row to
form a vector of stride one, and (2)

placing consecutive data at the same
column to form a vector of stride q.
One example with a 3 X 4 mask is
shown in Figure 3(b).

Six Blocks of BlockRAM

A
Y —~
) €] (2 ©)] 4 S
6 7 8 9 o .
. c ctl ct+2 ct+3 ct4
cthb ct+6 c+7 c+8 c+9 .
. . 2c 2c+1l] |2c+2| |[2c+3

L C e A _
(o123 i 4 JJ‘
] ¢l ctl | o2 | c+3 |i cea

|

Three (Left) Shift Registers

(a)
Six Blocks of BlockRAM

0 1 2 3 4 5

6 7 8 9 ° °

3 ° L . C C+1
ct+2 c+3 ct4 ct5 ct+6 ct7
C+8 c+9 [. . .

. . 2c 2c+l| |2c+2 2c+3

Figure 3: Using BlockRAM to buffer pixels:
(a) With CLB flip-flops for shift registers, and
(b) Without CLB flip-flops

Storing ¢(p—1)+¢ pixels on chip can be very
expensive. For example, if p =20, ¢ = 20, ¢ =
640, and b = 8, there are 12,180 bytes to store.
That translates into at least 3,045 CLBs on a
Xilinx 4000 series FPGA chip. This solution
is desirable when (¢(p — 1) + ¢) - b is small or
when the properties of the computation allows
for a bit sliced implementation (see [7] for an
example).

2.2 No Buffering of Image Rows

When storing p image rows on chip becomes
too expensive, the image can be stored off chip.
The result is that each pixel needs to be read
into the FPGA chip at least w times where w
is the number of active points of a mask. If
w is close to p - ¢, then it might be easier to
simply read each pixel p - ¢ times. However, if
w is relatively small compared to p - ¢, then it
might be worthwhile to store the locations of
the w active points inside the FPGA chip and
access each pixel only w times. In this case,
the external memory is accessed in a pseudo
random sequence according to the active points
of the mask. It takes w memory accesses to
compute the application of the mask to one
pixel location.

Pixel-Level Parallelism

Suppose each port of the external memory
can provide k pixels at a time, those pixels can
be consumed by using k copies of computation
units so to compute the results of applying the
mask to k consecutive pixel locations. With-
out loss of generality, the following description
assumes k = 2 in the exploration of this pixel-
level parallelism.

Assume that pixels are stored in the order
of scanned lines (row major) in the external
memory and labeled in increasing integer num-
bers. Figure 4(a) shows four windows resulting
from applying a mask to four consecutive pixel
locations where the pixel numbers involved in
applying a mask are indicated in each window.
For example, for Window 0, the numbers 0,
71, 101, 103, and so on, indicate the active
points of the mask, or equivalently the pixels
that need to be accessed from external mem-
ory. When the mask is moved to the next pixel
location, which results in Window 1, pixels 1,
72, 102, 133, and so on need to be used. To fa-
cilitate the pixel-level parallelism so that win-
dows 0 and 1 can be evaluated in parallel, there
is a need to provide simultaneously a pair of
consecutive pixels n and n 4+ 1 to those two
copies of computation units and n is not al-
ways even or always odd. (More specifically

0 1 2 3
71 72 73 74
101 102 103 104
132 133 134 135

Window 0 Window1l Window?2 Window 3

(a)

Mutiplexer | Even | odd |
Control [
—— Bits
0] 0
1 1] 2 3
1 A A
10| * :
- 132 133
101 101
71 71
0 1
A
Even Window Odd Window
Computation Computation

(b)

Figure 4: (a) Four windows resulting from ap-
plying a mask to four consecutive pixels, and
(b) Using small internal buffers (k = 2)

the values of n are 0, 71, 101, 132, and so on.)
The ability to provide simultaneously a pair
of consecutive pairs can be achieved by using
either a redundant external data storage or a
small internal buffer.

1. Redundant External Data Storage:
When pixels are stored in row major in
the external memory, two neighboring pix-
els on the same image row cannot always
be accessed in one clock cycle. For exam-
ple, if pixels n and n + 1 are stored at the
same address, then pixels n 4+ 1 and n + 2

are at two consecutive addresses and they
cannot be accessed in one clock cycle. To
facilitate the parallelism so that a mask
can be evaluated on two neighboring pix-
els in parallel, the external memory stores
redundant data as shown in Figure 5. In
this scheme one of the two pixels stored at
each address is redundant. That is, if pix-
els n and n + 1 are stored at one address,
then pixels n 4+ 1 and n + 2 are stored at
the next address. In this way, the external
data storage matchs very well to the needs
of the two copies of computation units. In
[3] such a design was used for an auto-
matic target recognition application and
implemented on a Giga Operations’s G900
FPGA board. The overhead of storing re-
dundant data is in the extra memory space
required and the time to arrange and store
the data.

e WIN | |O
AlWN|F

Externa
Memory

FPGA

Figure 5: Using redundant external data stor-
age (k =2)

2. Small Internal Buffer: The other option

is to store pixels in the external memory
in the order of scanned lines and to use
a small internal buffer in the FPGA chip
that can store w image pixels. One such
buffer is required for each of the k copies of
computation units. One example of such
a design is shown in Figure 4(b). In this
design the FPGA chip each time reads two
image pixels from the external memory,
one with an even address and the other
with an odd address. There are two copies

of the computation units, one dedicated to
even windows and the other to odd ones.
In the first clock cycle, pixels 0 and 1 are
fetched as desired and stored without be-
ing consumed. (They will be consumed
w cycles later.) In the second cycle, even
though pixels 70 and 71 are fetched, only
pixel 71 is useful and stored. Pixel 72 will
not be available until w cycles later. The
internal buffer therefore introduces w cy-
cles of delay.

For many FPGA boards, a memory port is
either 32-bit or 64-bit wide. Therefore it is
very possible that % is either 4 or 8. In that
case, the extension of the redundant storage
scheme is straightforward while the extension
of the internal buffering scheme leads to extra
complexity in internal control logic. It is also
possible to use a hybrid scheme that mixes the
two schemes. An example when k& = 4 is shown
in Figure 6.

0 1 2 3

2 3 4 5

Externa 4 5 6 7

Memory 6 7 8 9

FPGA

A 4 y N
Internal Internal
Buffer Buffer

v ! il v
Window | | Window | | Window | | Window
AN AN+1 AN+2 AN+3

Figure 6: Using a hybrid scheme (k = 4) with
redundant external data storage and small in-
ternal buffers

Multiple Memory Ports For some FPGA
boards, such as the StarFire board from An-
napolis Micro Systems, Inc., each FPGA chip
is connected to multiple memory ports. For

example, consider an FPGA chip that is con-
nected to four different ports, two 32-bit wide
and two 64-bit wide. In this case, it is possible
to fetch four independent pixels in one clock cy-
cle and therefore function-level parallelism can
be explored even without the internal buffering
of image rows.

2.3 Partial Buffering of Image Rows

When storing p image rows on chip becomes
too expensive, the image can be stored off chip.
That does not rule out the possibility of buffer-
ing less number of image rows inside an FPGA
chip. With full buffering, only one pixel need
to be brought in from off chip per window eval-
uation. With no row-buffering, w pixels need
to be accessed instead. By using partial buffer-
ing, only those active points that are not avail-
able on chip needs to be fetched. It is therefore
possible to trade-off space and time and to op-
timize designs in this way.

3 Mapping Multiple Masks to
Multiple FPGA Chips

When there are multiple masks, they may be
evaluated in parallel. This level of parallelism
is in addition to the function-level parallelism
and the pixel-level parallelism previously men-
tioned. When there are multiple FPGA chips
or when there are multiple memory ports per
chip, the pixel-level parallelism may be ex-
plored in a different way. The image may be
partitioned into “strips” of equal number of
rows and each strip may be assigned to one sin-
gle memory port (chip). When multiple masks
are assigned to the same FPGA chip, there is
an opportunity for masks to share hardware.
The overlapping adder tree used in [7] is one
such example.

4 Conclusions and Future

Work

This paper describes the generalized template
matching (GTM) operation and characterizes

the data allocation and buffering strategies for
GTM operation on reconfigurable computers.
The GTM operation offers ample opportunity
in parallelization at different levels, including
function-level, pixel-level, and multiple-mask-
level. Several mechanisms that support differ-
ent levels of parallelism are proposed and sum-
marized in the paper.

Given a cost function that specifies the area-
time tradeoff and constraints on FPGA areas,
an optimal design depends on factors such as
(1) the input image size, (2) size of templates,
(3) whether templates are constants or vari-
ables, and in the case of constants, the spe-
cific numeric values of templates, (4) compu-
tational operators in the generalized correla-
tion/convolution, (5) numeric precision of the
operators, and (6) data distribution (on mem-
ory or through bus). The problem is compli-
cated for human designers because hardware
sharing may be possible among multiple tem-
plates and hardware reuse may be necessary
due to FPGA area constraints. Previously re-
searchers have tried to produce good FPGA
designs for special cases of the GTM operation
with an ad hoc approach. It is more desir-
able to have systematical approaches that ei-
ther enumerate and evaluate the design options
or formulate the design problem as an opti-
mization problem. Such approaches would en-
able the development of a parameterized gen-
erator that automatically generates FPGA de-
signs given a set of user specifications for a
GTM.

Acknowledgments

This research was supported by DARPA under
Air Force contract number F33615-97-1-1148,
an Ohio State investment fund, and an Ohio
State research challenge grant. Xilinx Inc. do-
nated an FPGA design tool and FPGA chips
on XMODs.

References

[1] M. Alderight, E.L. Gummati, V. Piuri, and
G.R. Sechi, “A FPGA-based Implementa-
tion of a Fault-Tolerant Neural Architec-
ture for Photon Identification,” in Proc. of
ACM/SIGDA International Symposium on
FPGAs, pp. 166-172, 1997.

[2] R. Cook, J.S.N. Jean, J.S. Chen, “Acceler-
ating MPEG-2 Encoder Utilizing Reconfig-
urable Computing”, CERC/VIUF/IEEE
Computer Society Workshop on “21st Cen-
tury Electronic Systems Design: Break-
throughs in Quality and Productivity”,
University of Dayton, December 1997.

[3] J.S.N. Jean, X. Liang, B. Drozd, and K.
Tomko, “Accelerating An IR Automatic
Target Recognition Application with FP-
GAs,” to appear in IEEE Symposium on
FPGA Custom Computing Machines, April
1999.

[4] W.E. King, T.H. Drayer, R.W. Conners,
and P. Araman, “Using MORRPH in an In-
dustrial Machine Vision System,” in IEEE
Symposium on FPGA Custom Computing
Machines, pp. 18-26, 1996.

[5] S. Singh and R. Slous, “Accelerating Adobe
Photoshop with the Reconfigurable Logic,”
in IEEE Symposium on FPGA Custom
Computing Machines, pp. 18-26, 1998.

[6] M. Shand and L. Moll, “Hardware/Soft-
ware Integration in Solar Polarimetry,” in
IEEE Symposium on FPGA Custom Com-
puting Machines, pp. 18-26, 1998.

[7] J. Villasenor, B. Schoner, K. Chia, C. Zap-
ata, H. Kim, C. Jones, S. Lansing, and B.
Mangione-Smith, “Configurable Comput-
ing Solutions for Automatic Target Recog-
nition,” in TEEE Symposium on FPGA
Custom Computing Machines, pp. 70-79,
1996.

