
Data Bu�ering and Allocation in Mapping Generalized

Template Matching on Recon�gurable Systems

Jack Jean� Xuejun Liang� and Karen Tomko

Department of Computer Science and Engineering

Wright State University

Dayton� OH ������ USA

Abstract Image processing algorithms for �D dig�

ital �ltering� morphologic operations� motion esti�

mation� and template matching involve massively

parallel computations that can bene�t from us�

ing recon�gurable systems with massive �eld pro�

grammable gate array �FPGA� hardware resources�

In addition� each algorithm can be considered a

special case of a 	generalized template matching

�GTM� operation� Application performance on re�

con�gurable computer systems is often limited by

the bandwidth to host or o� chip memory� This

paper describes the GTM operation and character�

izes the data allocation and bu�ering strategies for

GTM operation on recon�gurable computers� Sev�

eral mechanisms that support di�erent levels of par�

allelism are proposed and summarized in the paper�

Keywords� Template Matching� Con�gurable

Computing� Field Programmable Gate Array

�FPGA�� Recon�guration

� Introduction

Computing systems that use co�processor
boards based on �eld programmable gate ar�
ray �FPGA� chips may adapt their hardware
resources to the application requirements� The
technology has been demonstrated for the ac�
celeration of various applications� such as au�
tomatic target recognition �ATR��	�
�� neu�
ral networks���� Adobe Photoshop��� Solar
Polarimetry���� and machine vision����

Image processing algorithms for �D digital
�ltering� morphologic operations� motion es�
timation� and template matching share some

common properties� They all involve massively
parallel computations that can bene�t from
using massive FPGA hardware resources� In
addition� each algorithm can be considered a
special case of a generalized template matching
�GTM� operation� As a result� designing opti�
mal implementations for these operations can
be characterized similarly and be solved sys�
tematically� A GTM operation consists of two
steps as illustrated in Figure ��

Picture

STEP 1: Generalized
 Convolution/Correlation
 with Templates/Masks

STEP 2:
Data Summary
(Minimum/Max
Calculation)

Figure �� Generalized template matching

In the �rst step of the GTM� the input data
are �convolved� �or �correlated�� with a set of
masks� or templates� to produce a set of con�
volved data� Note that an individual convolu�
tion may involve a sequence of masks and the
computation associated with each mask may
be generalized convolution�correlation as used
in morphologic operations and in motion esti�
mation� In the general case� the computation
associated with each mask can simply be a pre�

speci�ed function on a number of pixels indi�
cated by the mask� In the second step of the
GTM� the convolved data are �summarized�
which sometimes involves the calculation of the
smallest value among a set of numbers� Each
of the above mentioned algorithms is a GTM
in the following sense�

�� Template matching� there is a set of masks
in the �rst step� The second step summa�
rizes each convolved data and chooses the
best template based on some criteria� For
example� the maximal value inside a con�
volved data area may be used to indicate
the �tness of a template and the best tem�
plate may be de�ned as the one that �ts
best� or equivalently� the one that has the
largest maximal value� Template match�
ing is frequently used in automatic target
recognition applications�	�
��

�� Two�D digital �ltering� convolution of the
masks and the image is used in the �rst
step and there is no second step� If a
sequence of cascaded �lters is used� then
there is a sequence of masks� If a �l�
ter bank is used� then there are multiple
masks in the �rst step�

	� Morphologic operations� there is a se�
quence of masks in the �rst step and there
is no second step� Generalized convolu�
tion is used for the computation where the
multiplication and addition operations of
a convolution are replaced with addition
and maximal�minimal� respectively�

�� Motion estimation� there is a set of masks
in the �rst step and a generalized corre�
lation is used for the computation� The
second step involves the calculation of the
displacement vector for each mask� In this
case� the set of masks may be parts of a
previous image frame and they may have
related values� In addition� the contents of
masks may not be known until run time����

This paper characterizes the mapping of the
GTM operation on recon�gurable computers

in terms of data bu�ering and allocation� Sev�
eral mechanisms that support di�erent levels
of parallelism are proposed and summarized in
the paper� Section � describes the mapping of
a single mask to an FPGA chip with an ex�
ternal SRAM� The mapping of multiple masks
to multiple FPGA chips is then described in
Section 	�

� Mapping Single Mask to

Single FPGA Chip

The following notation is used in this paper�
For the GTM� suppose a mask is applied to an
image� The image has r rows and c columns
and each image pixel has b bits of precision�
The mask has p rows and q columns� In ad�
dition the mask has w number of active points
which include all the points necessary for the
mask computation� �Usually a mask contains
a pattern and the active points of a mask form
the pattern��

In this section� the FPGA board is assumed
to have only one FPGA chip which is directly
connected to one or multiple external memory
modules� The image data may be sent from
the host processor to the FPGA chip either
directly or through the memory modules� The
memory �or host� bandwidth to the FPGA can
be a severe bottleneck for some applications�

When no image row is bu�ered inside the
FPGA chip� each pixel needs to be read from
the external memory modules �or the host pro�
cessor� w times� Since w is usually much larger
than one� it is desirable to bu�er enough num�
ber of image rows inside the FPGA chip so
that each image pixel needs to be read only
once� When the bu�ering of image data re�
quires too much FPGA space� it becomes nec�
essary to store image o� chip and to access each
image pixels multiple times� The following dis�
cussion includes three cases� ��� full bu�ering
of image rows internally� ��� no internal bu�er�
ing of image rows� and �	� a partial bu�ering
scheme�

��� Full Image Row Bu�ering

0 1 2 3 4 5 6 •

• •
c+4c+3c+2c+1c c+5 c+6

• •

••
•

• • ••• •• • • •

2c+32c+22c+12c

• • ••• •• • • •

• •
• •

Figure �� Pixels that need to be bu�ered for a
	� � mask

Figure � shows a 	 � � mask being applied
to an image where the mask covers twelve pix�
els� �� �� �� 	� c� c � �� c� �� c � 	� �c� �c � ��
�c��� and �c�	� If the pixels enclosed by the
bold lines are bu�ered inside the FPGA chip�
moving the mask one pixel right requires only
the reading of one extra pixel� i�e�� pixel �c���
from the external memory �or the host proces�
sor�� In other words� when the FPGA chip can
bu�er c�p� �� � q pixels� the image pixels fed
into the chip can be fully reused internally and
each external pixel needs to be read exactly
once� That would greatly reduce the memory
bandwidth requirement�

Function�Level Parallelism The other ad�
vantage of internal bu�ering the image rows
is that� when all the pixels required to evalu�
ate one mask are available on chip� the paral�
lelism at the function evaluation level can be
explored� The adder tree used in �
� is an ex�
ample�

FPGA Bu�ers On Xilinx FPGA chips�
there are three di�erent mechanisms that can
be used to bu�er image rows�

�� Use the �ip��ops in CLBs �Con�gurable
Logic Blocks�� One CLB can store two
bits and those two bits can be accessed
in parallel� This mechanism is good for
storing the p �q pixels in a mask area so to
support the function�level parallelism�
��

�� Use the RAMs that are based on function
generators in CLBs� One CLB can store
	� bits without parallelism in accessing�
This mechanism can be used to store the
�p��� ��c�q� pixels that are not currently
used for the template�

	� Use the BlockRAM� which is available
only on Xilinx Virtex chips� The
XCV���� chip has 	� blocks� each being
a dual�ported ����� bit RAM� Therefore
that chip supports the parallel accessing
of �� ports where each port can be up to
�� bit wide� The BlockRAM can be used
in two ways to bu�er pixels�

� If CLB �ip��ops are available to
bu�er the p � q pixels in a mask
area� the BlockRAM can be used as
a bu�er so that in each clock cycle
p� � pixels are read from the Block�
RAM and one external pixel fetched
is written to the BlockRAM� One ex�
ample with a 	� � mask is shown in
Figure 	�a� where consecutive pixels
at the same column �such as �� c� and
�c� are assigned to form a vector of
stride one� Here the stride value of a
vector is the di�erence of block num�
bers between two consecutive vector
elements� That guarantees the paral�
lel reading of the p� � pixels� In the
diagram pixels �� �� �� 	 in the Block�
RAM are labeled with parentheses
indicating that those pixels can be
�and could have been� overwritten�
Note that consecutive pixels at the
same row �such as c� c � �� c � ��
c � 	� ���� could have been assigned
to the same block�

� If no CLB �ip��op is used for bu�er�
ing pixels� the c�p � �� � q pixels
should be arranged so that the p � q

pixels in a mask area can always be
accessed from di�erent ports� This
can be done by ��� distributing con�
secutive pixels at the same row to
form a vector of stride one� and ���

placing consecutive data at the same
column to form a vector of stride q�
One example with a 	 � � mask is
shown in Figure 	�b��

4

c+4

2c+4

Six Blocks of BlockRAM

•

••
(0) (1) (2) (3) 4 5
6 7 8 9
• • • • ••

c+7c+6c+5
c+1c

c+8 c+9

• •
• •

•

• • • •
2c+32c+22c+12c

c+2 c+3 c+4

Three (Left) Shift Registers

0 1 2 3

c+3c+2c+1c

2c+32c+22c+12c
From Off-chip

Mask (3 x 4)

�a�

0
••

1 2 3 4 5
6 7 8 9
• • • • ••

c+4c+3c+2
c+1c

c+5 c+6 c+7
c+8 c+9

• • • • ••
• •

• • • •

• • • •

2c+32c+22c+12c

Six Blocks of BlockRAM

�b�

Figure 	� Using BlockRAM to bu�er pixels�
�a� With CLB �ip��ops for shift registers� and
�b� Without CLB �ip��ops

Storing c�p����q pixels on chip can be very
expensive� For example� if p � ��� q � ��� c �
���� and b � �� there are ������ bytes to store�
That translates into at least 	��� CLBs on a
Xilinx ���� series FPGA chip� This solution
is desirable when �c�p � �� � q� � b is small or
when the properties of the computation allows
for a bit sliced implementation �see �
� for an
example��

��� No Bu�ering of Image Rows

When storing p image rows on chip becomes
too expensive� the image can be stored o� chip�
The result is that each pixel needs to be read
into the FPGA chip at least w times where w

is the number of active points of a mask� If
w is close to p � q� then it might be easier to
simply read each pixel p � q times� However� if
w is relatively small compared to p � q� then it
might be worthwhile to store the locations of
the w active points inside the FPGA chip and
access each pixel only w times� In this case�
the external memory is accessed in a pseudo
random sequence according to the active points
of the mask� It takes w memory accesses to
compute the application of the mask to one
pixel location�

Pixel�Level Parallelism

Suppose each port of the external memory
can provide k pixels at a time� those pixels can
be consumed by using k copies of computation
units so to compute the results of applying the
mask to k consecutive pixel locations� With�
out loss of generality� the following description
assumes k � � in the exploration of this pixel�
level parallelism�

Assume that pixels are stored in the order
of scanned lines �row major� in the external
memory and labeled in increasing integer num�
bers� Figure ��a� shows four windows resulting
from applying a mask to four consecutive pixel
locations where the pixel numbers involved in
applying a mask are indicated in each window�
For example� for Window �� the numbers ��

�� ���� ��	� and so on� indicate the active
points of the mask� or equivalently the pixels
that need to be accessed from external mem�
ory� When the mask is moved to the next pixel
location� which results in Window �� pixels ��

�� ���� �		� and so on need to be used� To fa�
cilitate the pixel�level parallelism so that win�
dows � and � can be evaluated in parallel� there
is a need to provide simultaneously a pair of
consecutive pixels n and n � � to those two
copies of computation units and n is not al�
ways even or always odd� �More speci�cally

0

1

101

102

•

Window 0

1

2

102

103

Window 1

2

3

103

104

Window 2

3

4

104

105

Window 3

•

• •

•

• •

••

0

71

101

132

•

Window 0

1

72

102

133

Window 1

2

73

103

134

Window 2

3

74

104

135

Window 3

•

• •

•

• •

••

�a�

Even Odd

132
101
71
0

133
101
71
1

Even Window
Computation

Odd Window
Computation

1 0

0 1
0
1
1
0
•
•

• •
•

2

•

3

Multiplexer
Control

Bits

�b�

Figure �� �a� Four windows resulting from ap�
plying a mask to four consecutive pixels� and
�b� Using small internal bu�ers �k � ��

the values of n are ��
�� ���� �	�� and so on��
The ability to provide simultaneously a pair
of consecutive pairs can be achieved by using
either a redundant external data storage or a
small internal bu�er�

�� Redundant External Data Storage�
When pixels are stored in row major in
the external memory� two neighboring pix�
els on the same image row cannot always
be accessed in one clock cycle� For exam�
ple� if pixels n and n�� are stored at the
same address� then pixels n� � and n� �

are at two consecutive addresses and they
cannot be accessed in one clock cycle� To
facilitate the parallelism so that a mask
can be evaluated on two neighboring pix�
els in parallel� the external memory stores
redundant data as shown in Figure � In
this scheme one of the two pixels stored at
each address is redundant� That is� if pix�
els n and n� � are stored at one address�
then pixels n� � and n � � are stored at
the next address� In this way� the external
data storage matchs very well to the needs
of the two copies of computation units� In
�	� such a design was used for an auto�
matic target recognition application and
implemented on a Giga Operations�s G���
FPGA board� The overhead of storing re�
dundant data is in the extra memory space
required and the time to arrange and store
the data�

0

External
Memory

FPGA

•
• •

•

1
1
2

2
3

3 4

Figure � Using redundant external data stor�
age �k � ��

�� Small Internal Bu�er� The other option
is to store pixels in the external memory
in the order of scanned lines and to use
a small internal bu�er in the FPGA chip
that can store w image pixels� One such
bu�er is required for each of the k copies of
computation units� One example of such
a design is shown in Figure ��b�� In this
design the FPGA chip each time reads two
image pixels from the external memory�
one with an even address and the other
with an odd address� There are two copies

of the computation units� one dedicated to
even windows and the other to odd ones�
In the �rst clock cycle� pixels � and � are
fetched as desired and stored without be�
ing consumed� �They will be consumed
w cycles later�� In the second cycle� even
though pixels
� and
� are fetched� only
pixel
� is useful and stored� Pixel
� will
not be available until w cycles later� The
internal bu�er therefore introduces w cy�
cles of delay�

For many FPGA boards� a memory port is
either 	��bit or ���bit wide� Therefore it is
very possible that k is either � or �� In that
case� the extension of the redundant storage
scheme is straightforward while the extension
of the internal bu�ering scheme leads to extra
complexity in internal control logic� It is also
possible to use a hybrid scheme that mixes the
two schemes� An example when k � � is shown
in Figure ��

External
Memory

FPGA

0

•
• •

•

1
2

2 3
3 4

4
5

5
6 7 8 9

•
•

•
•

6 7

Window
4N

Window
4N+1

Window
4N+2

Window
4N+3

Internal
Buffer

Internal
Buffer

Figure �� Using a hybrid scheme �k � �� with
redundant external data storage and small in�
ternal bu�ers

Multiple Memory Ports For some FPGA
boards� such as the StarFire board from An�
napolis Micro Systems� Inc�� each FPGA chip
is connected to multiple memory ports� For

example� consider an FPGA chip that is con�
nected to four di�erent ports� two 	��bit wide
and two ���bit wide� In this case� it is possible
to fetch four independent pixels in one clock cy�
cle and therefore function�level parallelism can
be explored even without the internal bu�ering
of image rows�

��� Partial Bu�ering of Image Rows

When storing p image rows on chip becomes
too expensive� the image can be stored o� chip�
That does not rule out the possibility of bu�er�
ing less number of image rows inside an FPGA
chip� With full bu�ering� only one pixel need
to be brought in from o� chip per window eval�
uation� With no row�bu�ering� w pixels need
to be accessed instead� By using partial bu�er�
ing� only those active points that are not avail�
able on chip needs to be fetched� It is therefore
possible to trade�o� space and time and to op�
timize designs in this way�

� Mapping Multiple Masks to

Multiple FPGA Chips

When there are multiple masks� they may be
evaluated in parallel� This level of parallelism
is in addition to the function�level parallelism
and the pixel�level parallelism previously men�
tioned� When there are multiple FPGA chips
or when there are multiple memory ports per
chip� the pixel�level parallelism may be ex�
plored in a di�erent way� The image may be
partitioned into �strips� of equal number of
rows and each strip may be assigned to one sin�
gle memory port �chip�� When multiple masks
are assigned to the same FPGA chip� there is
an opportunity for masks to share hardware�
The overlapping adder tree used in �
� is one
such example�

� Conclusions and Future

Work

This paper describes the generalized template
matching �GTM� operation and characterizes

the data allocation and bu�ering strategies for
GTM operation on recon�gurable computers�
The GTM operation o�ers ample opportunity
in parallelization at di�erent levels� including
function�level� pixel�level� and multiple�mask�
level� Several mechanisms that support di�er�
ent levels of parallelism are proposed and sum�
marized in the paper�

Given a cost function that speci�es the area�
time tradeo� and constraints on FPGA areas�
an optimal design depends on factors such as
��� the input image size� ��� size of templates�
�	� whether templates are constants or vari�
ables� and in the case of constants� the spe�
ci�c numeric values of templates� ��� compu�
tational operators in the generalized correla�
tion�convolution� �� numeric precision of the
operators� and ��� data distribution �on mem�
ory or through bus�� The problem is compli�
cated for human designers because hardware
sharing may be possible among multiple tem�
plates and hardware reuse may be necessary
due to FPGA area constraints� Previously re�
searchers have tried to produce good FPGA
designs for special cases of the GTM operation
with an ad hoc approach� It is more desir�
able to have systematical approaches that ei�
ther enumerate and evaluate the design options
or formulate the design problem as an opti�
mization problem� Such approaches would en�
able the development of a parameterized gen�
erator that automatically generates FPGA de�
signs given a set of user speci�cations for a
GTM�

Acknowledgments

This research was supported by DARPA under
Air Force contract number F		����
��������
an Ohio State investment fund� and an Ohio
State research challenge grant� Xilinx Inc� do�
nated an FPGA design tool and FPGA chips
on XMODs�

References

��� M� Alderight� E�L� Gummati� V� Piuri� and
G�R� Sechi� �A FPGA�based Implementa�
tion of a Fault�Tolerant Neural Architec�
ture for Photon Identi�cation�� in Proc� of
ACM�SIGDA International Symposium on
FPGAs� pp� �����
�� ���
�

��� R� Cook� J�S�N� Jean� J�S� Chen� �Acceler�
ating MPEG�� Encoder Utilizing Recon�g�
urable Computing�� CERC�VIUF�IEEE
Computer Society Workshop on ���st Cen�
tury Electronic Systems Design� Break�
throughs in Quality and Productivity��
University of Dayton� December ���
�

�	� J�S�N� Jean� X� Liang� B� Drozd� and K�
Tomko� �Accelerating An IR Automatic
Target Recognition Application with FP�
GAs�� to appear in IEEE Symposium on
FPGA Custom ComputingMachines� April
�����

��� W�E� King� T�H� Drayer� R�W� Conners�
and P� Araman� �Using MORRPH in an In�
dustrial Machine Vision System�� in IEEE
Symposium on FPGA Custom Computing
Machines� pp� ������ �����

�� S� Singh and R� Slous� �Accelerating Adobe
Photoshop with the Recon�gurable Logic��
in IEEE Symposium on FPGA Custom
Computing Machines� pp� ������ �����

��� M� Shand and L� Moll� �Hardware�Soft�
ware Integration in Solar Polarimetry�� in
IEEE Symposium on FPGA Custom Com�
puting Machines� pp� ������ �����

�
� J� Villasenor� B� Schoner� K� Chia� C� Zap�
ata� H� Kim� C� Jones� S� Lansing� and B�
Mangione�Smith� �Con�gurable Comput�
ing Solutions for Automatic Target Recog�
nition�� in IEEE Symposium on FPGA
Custom Computing Machines� pp�
��
��
�����

