Data Buffering and Allocation in Mapping Generalized
Template Matching on Reconfigurable Systems

Xuejun Liang, Jack Jean and Karen Tomko

Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435,
USA

Abstract. Image processing algorithms for 2D digital filtering, morphologic operations, motion
estimation, and template matching involve massively parallel computations that can benefit from
using reconfigurable systems with massive field programmable gate array (FPGA) hardware re-
sources. In addition, each algorithm can be considered a special case of a “generalized template
matching” (GTM) operation. Application performance on reconfigurable computer systems is often
limited by the bandwidth to host or off chip memory. This paper describes the GTM operation
and characterizes the data allocation and buffering strategies for the GTM operation on reconfig-
urable computers. Several mechanisms that support different levels of parallelism are proposed and
summarized in the paper. Finally, the implementation of an infrared automatic target recognition
application on two commercial FPGA boards is used to demonstrate the various design options
with different data allocation and buffering mechanisms and the pruning of the design space based
on the FPGA area and memory constraints.

Keywords: Template Matching, Configurable Computing, Field Programmable Gate Array (FPGA),
Reconfiguration

1. Introduction

Computing systems that use co-processor boards based on field programmable
gate array (FPGA) chips may adapt their hardware resources to the application
requirements. The technology has been demonstrated for the acceleration of var-
ious applications, such as automatic target recognition (ATR)[4, 9, 11], neural
networks[1], Adobe Photoshop|7], Solar Polarimetry[8], and machine vision[6].

Image processing algorithms for 2D digital filtering, morphologic operations,
motion estimation, and template matching share some common properties. They
all involve massively parallel computations that can benefit from using massive
FPGA hardware resources. In addition, each algorithm can be considered a special
case of a generalized template matching (GTM) operation. As a result, designing
optimal implementations for these operations can be characterized similarly and
be solved systematically. A GTM operation consists of two steps as illustrated in
Figure 1.

In the first step of the GTM, the input data are “convolved” (or “correlated”)
with a set of masks, or templates, to produce a set of convolved data. Note that
an individual convolution may involve a sequence of masks and the computation
associated with each mask may be generalized convolution/correlation as used in
morphologic operations and in motion estimation. In the general case, the compu-

';:‘ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; p.1

» B — B ~ o m————
O v H— i

1

1 STEP 2:
& —> = ! Data Summary

i

1

] i (Minimum/Max
: Calculation)

[
[

Y
Picture fH

STEP 1: Generalized
Convolution/Correlation
with Templates/Masks

Figure 1. Generalized template matching

tation associated with each mask can simply be a pre-specified function on a number
of pixels indicated by the mask. In the second step of the GTM, the convolved data
are “summarized” which sometimes involves the calculation of the smallest value
among a set of numbers. Each of the above mentioned algorithms is a GTM in the
following sense.

1. Template matching: there is a set of masks in the first step. The second step
summarizes each convolved data and chooses the best template based on some
criteria. For example, the maximal value inside a convolved data area may be
used to indicate the fitness of a template and the best template may be defined
as the one that fits best, or equivalently, the one that has the largest maximal
value. Template matching is frequently used in automatic target recognition
applications[4, 9].

2. Two-D digital filtering: convolution of the masks and the image is used in the
first step and there is no second step. If a sequence of cascaded filters is used,
then there is a sequence of masks. If a filter bank is used, then there are multiple
masks in the first step.

3. Morphologic operations: there is a sequence of masks in the first step and there
is no second step. Generalized convolution is used for the computation where
the multiplication and addition operations of a convolution are replaced with
addition and maximal/minimal, respectively.

4. Motion estimation: there is a set of masks in the first step and a generalized
correlation is used for the computation. The second step involves the calculation
of the displacement vector for each mask. In this case, the set of masks may be
parts of a previous image frame and they may have related values. In addition,
the contents of masks may not be known until run time[2].

A special case of the GTM operation is the “Sliding Window-Based Operations”
as in [10] where all the pixels (or samples) in the “window” (or mask) are involved

paper.tex; p.2

3

in the computation and sent to the computational units for processing. Note that in
template matching sometimes a template is quite “sparse” and only a low percentage
of pixels are involved in the computation. Such kind of template matching is a GTM
operation that does not belong to that class of “Sliding Window-Based Operations.”

This paper characterizes the mapping of the GTM operation on reconfigurable
computers in terms of data allocation and buffering. Several mechanisms that sup-
port different levels of parallelism are proposed and summarized in the paper.
Section 2 describes the mapping of a single mask to an FPGA chip with an external
SRAM. The mapping of multiple masks to multiple FPGA chips is then described in
Section 3. Section 4 presents a case study of utilizing data allocation and buffering
strategies. Conclusions and future work is given in Section 5.

2. Mapping Single Mask to Single FPGA Chip

The following notation is used in this paper. For the GTM, suppose a mask is
applied to an image. The image has r rows and c¢ columns and each image pixel
has b bits of precision. The mask has p rows and g columns. In addition the mask
has w number of active points which include all the points necessary for the mask
computation. (Usually a mask contains a pattern and the active points of a mask
form the pattern.)

In this section, the FPGA board is assumed to have only one FPGA chip which
is directly connected to one or multiple external memory modules. The image data
may be sent from the host processor to the FPGA chip either directly or through
the memory modules. The memory (or host) bandwidth to the FPGA can be a
severe bottleneck for some applications.

When no image row is buffered inside the FPGA chip, each pixel needs to be
read from outside the FPGA (the external memory modules or the host processor)
w times. Since w is usually much larger than one, it is desirable to buffer enough
number of image rows inside the FPGA chip so that each image pixel needs to be
read only once. When the buffering of image data requires too much FPGA space,
it becomes necessary to store image off chip and to access each image pixel multiple
times. The following discussion includes three cases: (1) full buffering of image rows
internally, (2) no internal buffering of image rows, and (3) a partial buffering scheme.

2.1. FuLL IMAGE Row BUFFERING

Figure 2 shows a 3 x 4 mask being applied to an image where the mask covers twelve
pixels, 0, 1, 2, 3, ¢, c+ 1, ¢+ 2, ¢+ 3, 2¢, 2c+ 1, 2c + 2, and 2¢ + 3. If the pixels
enclosed by the bold lines are buffered inside the FPGA chip, moving the mask one
pixel right requires only the reading of one extra pixel, i.e., pixel 2c¢+4, from outside
the FPGA. In other words, when the FPGA chip can buffer ¢(p — 1) + ¢ pixels, the
image pixels fed into the chip can be fully reused internally and each external pixel

paper.tex; p.3

. . 0 1 2| 3 4 5 6 | o

. . C | c+l{c+2|c+3c+4| c+5 | c+6] o
. . 2C |2c+1|2c+2/ 2c+3F . . .

Figure 2. Pixels that need to be buffered for a 3 x 4 mask

needs to be read exactly once. That would greatly reduce the memory bandwidth
requirement.

2.1.1. Function-Level Parallelism

The other advantage of internal buffering the image rows is that, when all the pixels
required to evaluate one mask are available on chip, the parallelism at the function
evaluation level can be explored. The adder tree used in [9] is an example.

2.1.2. FPGA Buffers
On Xilinx FPGA chips, there are three different mechanisms that can be used to

buffer image rows.

1. Use the flip-flops in CLBs (Configurable Logic Blocks). One CLB can store
two bits and those two bits can be accessed in parallel. This mechanism is
good for storing the p - ¢ pixels in a mask area so to support the function-level
parallelism[9].

2. Use the RAMs that are based on function generators in CLBs. One CLB can
store 32 bits (which cannot be accessed in parallel). This mechanism can be used
to store the (p — 1) - (¢ — q) pixels that are not currently used for the template.

3. Use the BlockRAM, which is available only on Xilinx Virtex chips. The XCV1000
chip has 32 blocks, each being a dual-ported 4,096 bit RAM. Therefore that chip
supports the parallel accessing of 64 ports where each port can be up to 16 bit
wide. The BlockRAM can be used in two ways to buffer pixels.

— If CLB flip-flops are available to buffer the p - ¢ pixels in a mask area, the
BlockRAM can be used as a buffer so that in each clock cycle p — 1 pixels
are read from the BlockRAM and one external pixel fetched is written to the
BlockRAM. One example with a 3 x 4 mask is shown in Figure 3(a) where
consecutive pixels at the same column (such as 0, ¢, and 2¢) are assigned to
form a vector of stride one. Here the stride value of a vector is the difference
of block numbers between two consecutive vector elements. That guarantees
the parallel reading of the p — 1 pixels. In the diagram pixels 0, 1, 2, 3 in the
BlockRAM are labeled with parentheses indicating that those pixels can be

paper.tex; p.4

5

(and could have been) overwritten. Note that consecutive pixels at the same
row (such as ¢, ¢+ 1, ¢+ 2, ¢+ 3, ...) could have been assigned to the same
block.

— If no CLB flip-flop is used for buffering pixels, the ¢(p — 1) + ¢ pixels should
be arranged so that the p - ¢ pixels in a mask area can always be accessed
from different ports. This can be done by (1) distributing consecutive pixels
at the same row to form a vector of stride one, and (2) placing consecutive
data at the same column to form a vector of stride q. One example with a
3 x 4 mask is shown in Figure 3(b).

Six Blocks of BlockRAM

A
-~ —~
(0) 1) (2) 3) 4 5
6 7 8 9 L4 °
e c c+1 c+2 c+3 c+4
ct+b c+6 c+7 c+8 c+9 .
° . 2C 2c+l] |[2c+2 |2c¢c+3
Six Blocks of BlockRAM
Mask 4
---uu----ausuugngu)-(u-)- ------------ ‘J 0 1 2 3 4 5
o123 6 7 8 9 2 .
: + ° . d . c ctl
¢ ‘ a ‘ c+2 l c+3 ‘ c+2 | |c+3 c+4| | c+5 c+6| |Cct+7
[2c | 2c+1] 2042 20+3]} 2c+4 c+8| [ero| [«] [~ -] [
Three (Left) Shift Registers From Off-chip . . 2c 2c+l |2c+2 |2c+3

(a) (b)
Figure 3. Using BlockRAM to buffer pixels: (a) With CLB flip-flops for shift registers, and (b)
Without CLB flip-flops

Storing ¢(p — 1) + ¢ pixels on chip can be very expensive. For example, if p = 20,
q = 20, c = 640, and b = 8, there are 12,180 bytes to store. That translates into
at least 3,045 CLBs on a Xilinx 4000 series FPGA chip. This solution is desirable
when (¢(p — 1) +¢) - b is small or when the properties of the computation allows for
a bit sliced implementation (see [9] for an example).

2.2. NoO BUFFERING OF IMAGE Rows
When storing p image rows on chip becomes too expensive, the image can be stored

off chip. The result is that each pixel needs to be read into the FPGA chip at least
w times where w is the number of active points of a mask. If w is close to p- ¢, then

paper.tex; p.b5

6

it might be easier to simply read each pixel p - ¢ times. However, if w is relatively
small compared to p - ¢, then it might be worthwhile to store the locations of the
w active points inside the FPGA chip and access each pixel only w times. In this
case, the external memory is accessed in a pseudo random sequence according to the
active points of the mask. It takes w memory accesses to compute the application
of the mask to one pixel location.

2.2.1. Pizel-Level Parallelism

Suppose each port of the external memory can provide k pixels at a time, those pixels
can be consumed by using k copies of computation units so to compute the results
of applying the mask to k consecutive pixel locations. Without loss of generality, the
following description assumes k = 2 in the exploration of this pixel-level parallelism.

Multiplexer ‘ Even ‘ Odd
Control [1
Bits w
2 3
0 1 2 3 > :
71 72 73 74 132 133
101 101
101 102 103 104 71 71
132 133 134 135 0 1
* i i i Even Window Odd Window
Window 0 Window 1 Window 2 Window 3 Computation | | Computation

(a) (b)
Figure 4. (a) Four windows resulting from applying a mask to four consecutive pixels, and (b)
Using small internal buffers (k = 2)

Assume that pixels are stored in the order of scanned lines (row major) in the
external memory and labeled in increasing integer numbers. Figure 4(a) shows four
windows resulting from applying a mask to four consecutive pixel locations where
the pixel numbers involved in applying a mask are indicated in each window. For
example, for Window 0, the numbers 0, 71, 101, 103, and so on, indicate the active
points of the mask, or equivalently the pixels that need to be accessed from external
memory. When the mask is moved to the next pixel location, which results in
Window 1, pixels 1, 72, 102, 133, and so on need to be used. To facilitate the
parallel evaluation of windows 0 and 1, there is a need to provide simultaneously
a pair of consecutive pixels n and n + 1 to those two copies of computation units
where the values of n are 0, 71, 101, 132, and so on. When n is 71, providing 71

paper.tex; p.6

7

and 72 simultaneously requires special mechanism because the memory word size is
equal to two pixels when k£ = 2, and a memory word always starts at an even pixel.
The special mechanism can be either of the following.

1. Redundant External Data Storage: When pixels are stored in row major in the
external memory, two neighboring pixels on the same image row cannot always
be accessed in one clock cycle. For example, if pixels n and n + 1 are stored at
the same address, then pixels n 4+ 1 and n + 2 are at two consecutive addresses
and they cannot be accessed in one clock cycle. To facilitate the parallelism so
that a mask can be evaluated on two neighboring pixels in parallel, the external
memory stores redundant data as shown in Figure 5(a). In this scheme one of the
two pixels stored at each address is redundant. That is, if pixels n and n+ 1 are
stored at one address, then pixels n+1 and n+ 2 are stored at the next address.
In this way, the external data storage matchs very well to the needs of the two
copies of computation units. In [4, 3] such a design was used for an automatic
target recognition application and implemented on a Giga Operations’s G900
FPGA board. The overhead of storing redundant data is in the extra memory
space required and the time to arrange and store the data.

0 1 o] 1/ 2] 3
1 2 1] 2/ 3] 4
g 2 2 3[4 5
External . . ::’ 4 ? ?
Memory .) - : T
v bl

| FPGA | | FPGA

(a)

Figure 5. Using redundant external data storage: (a) k = 2, and (b) k =4

2. Small Internal Buffer: The other option is to store pixels in the external memory
in the order of scanned lines and to use a small internal buffer in the FPGA chip
that can store w image pixels. One such buffer is required for each of the k copies
of computation units. One example of such a design is shown in Figure 4(b). In
this design the FPGA chip each time reads two image pixels from the external
memory, one with an even address and the other with an odd address. There
are two copies of the computation units, one dedicated to even windows and the
other to odd ones. In the first clock cycle, pixels 0 and 1 are fetched as desired
and stored without being consumed. (They will be consumed w cycles later.)
In the second cycle, even though pixels 70 and 71 are fetched, only pixel 71 is
useful and stored. Pixel 72 will not be available until w cycles later. The internal
buffer therefore introduces w cycles of delay.

paper.tex; p.7

For many FPGA boards, a memory port is either 32-bit or 64-bit wide. Therefore
it is very possible that £ is either 4 or 8. In that case, the extension of the redun-
dant storage scheme is straightforward while the extension of the internal buffering
scheme leads to extra complexity in internal control logic. An example when k& = 4
is shown in Figure 6. It is also possible to use a hybrid scheme that mixes the two
schemes. An example when k£ = 4 is shown in Figure 7.

Memory

do |d1 d2 d3
8 8 8 8

0

InteLnaI bulfer

64 mO0 | ml m2 m3

1 0|1 0] |1

R, |O|O
| O|FL, | O

11 [q H
} o] |1
of |1
Computatjon \T/
w3

wo | wl w2

Figure 6. Internal buffer (k = 4)

2.2.2. Multiple Memory Ports

For some FPGA boards, such as the StarFire board from Annapolis Micro Systems,
Inc., each FPGA chip is connected to multiple memory ports. For example, consider
an FPGA chip that is connected to four different ports, two 32-bit wide and two 64-
bit wide. In this case, it is possible to fetch four independent pixels in one clock cycle
and therefore function-level parallelism can be explored even without the internal
buffering of image rows.

paper.tex; p.8

0 1 2 3
2 3 4 5
External| 4 5 6 7
Memory 6 7 8 9
FPGA
v A A, A,
Internal Internal
Buffer Buffer
v v Il v
Window | | Window | | Window | | Window
4N 4AN+1 4AN+2 4AN+3

Figure 7. Using a hybrid scheme (k = 4) with redundant external data storage and small internal
buffers

2.3. PARTIAL BUFFERING OF IMAGE Rows

When storing p image rows on chip becomes too expensive, the image can be stored
off chip. That does not rule out the possibility of buffering less number of image
rows inside an FPGA chip. With full buffering, only one pixel need to be brought
in from off chip per window evaluation. With no row-buffering, w pixels need to be
accessed instead. By using partial buffering, only those active points that are not
available on chip needs to be fetched. It is therefore possible to trade-off space and
time and to optimize designs in this way.

3. Mapping Multiple Masks to Multiple FPGA Chips

When there are multiple masks, they may be evaluated in parallel. This level of
parallelism is in addition to the function-level parallelism and the pixel-level paral-
lelism previously mentioned. When there are multiple FPGA chips or when there
are multiple memory ports per chip, the pixel-level parallelism may be explored in
a different way. The image may be partitioned into “strips” of equal number of rows
and each strip may be assigned to one single memory port (chip). When multiple
masks are assigned to the same FPGA chip, there is an opportunity for masks to
share hardware. The overlapping adder tree used in [9] is one such example.

paper.tex; p.9

10

4. Case Study

When mapping an application on reconfigurable systems, there are usually many
design options by exploring parallelism at various levels. For parallelism at the pixel
level different data buffering and allocation mechanisms require different amount of
FPGA area, number of memory ports, and memory size which are all constrained
by the FPGA co-processor board. As a result, the constraints can be used to prune
the number of design options. This point is illustrated in this section by first
implementing an infrared automatic target recognition (IR ATR) application on
two different commercial FPGA boards and then using the data obtained from the
implementation to estimate the resource requirements of different design options.

In the following subsections, the IR ATR algorithm and the two FPGA boards
are first introduced. The design decision-making process is then described.

4.1. THE IR ATR ALGORITHM

The IR ATR algorithm locates and identifies ground vehicles based on a single IR
image frame. The IR ATR algorithm consists of many conceptually simple steps
that each evaluates the matching between an image area and a template pair of
target and background.

An overview of the algorithm is shown in Figure 8. The algorithm contains several
steps, called Round 0, Round 1, Round 2, ..., and Round 5. The first step, Round
0, is applied to the whole image of size 480 x 640 to identify the location and the
target super-group of regions of interests (ROIs). Here an ROI is an image pixel
whose surrounding area meets a certain criterion and is considered a candidate for
further investigation. Usually no more than 20% of the image pixels become ROIs.
(For the four test images available to the authors, less than 5% of pixels are ROIs.)
Six template pairs are used in Round 0.

640

Round Rounds
1 2,3,4,5

480 | Image —»

(RN
I 0o ogogd

6 Templates 2 Templates 5 Templates

Figure 8. The ATR algorithm
Only ROIs are passed to the second step, Round 1, for further hypothesis testing

and classification into target groups. Depending on which target super-group an ROI
belongs to, Round 1 uses either two or five templates. ROIs that passed the Round

paper.tex; p.10

11

1 test are further tested through the remaining rounds and at the end, several pixels
survive with their target types identified.

Because of the pruning process, Round 0 is computationally the most expensive
step, followed by Round 1. Hence these two rounds were targeted for FPGA accel-
eration. They were first implemented on the G900 board (see [3]), and then ported
to the StarFire FPGA board. But as will become clear in the section, “porting”
to a different FPGA board may drastically change the constraints and necessitate
the “invention” of a very different design, at least from a human designer’s point of
view.

4.2. HARDWARE PLATFORMS

The first reconfigurable computing platform used in this application is a 180 MHz
Pentium-pro personal computer hosting a G900 FPGA board which is a PCI bus
based board manufactured by Giga Operations Corporation. This board consists
of eight computing modules (XMODs) where each XMOD contains two XC4020E
FPGA chips, 2 MB DRAM, and 256 KB SRAM. Each XC4020E chip on an XMOD
is connected to a 128 KB SRAM through a 16-bit wide data port (see Figure 9).
The host processor has to go through FPGA chips to access SRAM. Also, the host
processor has to go through YFPGA to access XFGPA. In our implementation
neither the XFPGA nor the DRAM is used so to reduce the design complexity.
As a result, an XMOD in our case can be considered as a single XC4020E chip
connected to a 128 KB SRAM through a 16-bit wide data port. While the FPGAs
can run at two clock rates of 33MHz and 16MHz, the host and memory interfaces
are limited to 16 MHz.

16
XFPGA [V | smam |
(XC4020E) 16
16 16
16 | DRAM || DRAM |
16 16
16

(XC4020E) | 16 "opay]

Figure 9. The XMOD architecture

The second reconfigurable platform used for this application is a 200 MHz Pentium-
pro personal computer hosting a StarFire FPGA board which is a PCI bus based
board manufactured by Annapolis Micro System, Inc. The board has one Xilinx
Virtex XCV1000 chip as a processing element (PE) and two local IMB SRAMs,
labeled as “Left Mem” and “Right Mem” in Figure 10, each of which has a 32-bit

paper.tex; p.11

12

wide data port. The board has two mezzanine cards attached to it. Each mezzanine
card contains two 1IMB SRAMs, each with a crossbar and a 64-bit wide data port.
The PE can access the SRAMSs on mezzanine card through the crossbar. The Virtex
FPGA on the board can run at clock up to 100MHz, but the PCI clock runs at
33MHz.

LEFT MEZZ

Left |32 Crossbar
Mem _'_l

PE1

Right |32
Mem Crossbar
110
Card
clk SRAM -

I /\ T\[RIGHT MEZZ

PCI , '\
Local Address/Data 32Bits 33MHz
Controller\, ‘/

Figure 10. The StarFire architecture

4.3. EXPLORING FUNCTION-LEVEL PARALLELISM

The function-level parallelism depends on the particular computation performed on
each pixel location with a template. Since this level of parallelism is not the focus
of this section, it suffices to say that two basic FPGA computational blocks were
implemented, one for Round 0 and the other for Round 1. (Please refer to [3] for
details.)

The basic block for Round 0 corresponds to the computation of applying one
template-pair to a single pixel location. The block reads in one pixel each clock
cycle where each pixel is one byte long. It takes 60 clock cycles before the block
can start applying the template-pair to the next pixel. (A template-pair contains
60 active points.) Note that no row buffering was used because it would have taken
too much FPGA area. The basic block for Round 1 corresponds to the computation
of applying one template to a single pixel location. The block consumes four pixel
values from external memory each clock cycle and it takes 20 clock cycles before
the block can start applying the template to the next pixel. (A Round 1 template
contains 80 active points.)

4.4. EXPLORING PIXEL-LEVEL PARALLELISM

To explore the pixel-level parallelism and therefore maximize the throughput, as
many copies of those basic blocks as possible are to be squeezed into the FPGA

paper.tex; ©p.12

13

Table I. Area requirements for various Round 0 components

G900 (XC4020E) | StarFire (XCV1000)
Area (CLBs) Area (Slices)
One Basic Block | 268 | 232 |
Internal k=2 72 -
Buffer | Hybrid(k = 4) - 114
k=4 - 129
FIFO (for active pixels)	32	32
Controller	186	338
Sub-block A	110	.
Sub-block B	158	.
Multiplexer	46	-

chip under the constraints of FPGA area, memory size, memory port width, and
the number of memory ports.

4.4.1. Design Decision Making for G900 Mapping

On each XMOD for the G900 board, the SRAM connected to FPGA chip has a 16-
bit wide data port. Since the Round 0 basic block requires one pixel per clock cycle,
the maximal number of copies that can be used is two. For Round 1, the basic block
requires reading four pixels each clock cycle, which cannot be effectively supported
by this board without re-designing the basic block. As a result, only Round 0 is
considered for G900 board discussion. To combine the two copies of Round 0 basic
blocks, there are two main options:

— Option I: Use internal buffer (as in Figure 4)

— Option 2: Duplicate data storage (as in Figure 5(a))

In order to evaluate these options, FPGA areas for several Round 0 design
components are listed in Table I where the CLB/Slice numbers are produced by
using Xilinx’s place and route tool. It should be pointed out that the controller
CLB/Slice areas are for two copies of basic blocks in the case of G900 and for four
copies in the case of StarFire. The controller areas may certainly change when using
a different strategy for combining basic blocks. However the change is assumed to
be little. Also, the CONTROLLER area for the G900 column is more precise in
that it includes the host interface and SRAM interface while the CONTROLLER
area for the StarFire column does not.

paper.tex; p.13

14

Using Table I, the number of CLBs needed for option 1 is at least 826 (= 2 X
268+72+432+186) while that for option 2 is at least 754 (= 2x268+32+186). Both
numbers are more than 705, which is 90 percent of the CLB count on an XC4020E
FPGA chip (which contains 784 CLBs). Here we are assuming that only up to 90
percent of the CLBs can be used by the design. (At least ten percent are assumed
to be used for placement and routing overhead.) It seems that neither option is
feasible!

Further study indicates that the basic block contains two sub-blocks, A and
B, and by doubling the clock frequency of sub-block B and using a multiplexer,
sub-block B can be “shared” (time-multiplexed) by both copies of basic blocks.
(Sub-block A cannot be shared because it uses the 33 MHz clock already for memory
data access while sub-block B originally uses the 16 MHz clock.) With the sharing
of sub-block B, either option can save 112 (= 158 — 46) CLBs. Therefore option
1 needs at least 714 CLBs while option 2 needs 642 CLBs. Now both options can
potentially be implemented. But of course option 2 has a better chance of success.

4.4.2. Design Decision Making for StarFire Mapping

For the StarFire board, there are four memory modules that are available to the
PE, two with 32-bit wide data ports and two with 64-bit ones. However each port
in our study is treated as a 32-bit one so to have a modular design for all memory
modules which would then simplify the design complexity. For Round 0, since each
basic block consumes only one byte per clock cycle, a 32-bit wide data port can
support four copies of Round 0 basic blocks and a maximal of 16 copies can be
mapped to the FPGA chip. For Round 1, because the template is only applied to
Round 0 ROIs and therefore random data access is required, a 32-bit wide data port
is treated as 8-bit wide (i.e., 24 bits are ignored). Since the Round 1 basic block
consumes four bytes per clock cycle, one byte from each of four memories, only one
copy is put into the FPGA.

Because the FPGA chip (XCV1000) contains 12288 slices, which are more than
enough to accommodate 16 copies of Round 0 basic blocks, one copy of Round 1
basic block, and the extra components, the FPGA chip area is not the constraint
that plays a critical role in the decision making process. Instead the size of each
memory module is the constraint. (Note that one frame of the image is roughly
300KB.) For each memory module, we may consider the following three options.

— Option I: Duplicate data storage (as in Figure 5(b))
— Option 2: Use the hybrid strategy (as in Figure 7)

— Option 3: Use internal Buffer (as in Figure 6)
Because we choose to use only 32-bit ports, the effective size of each mezzanine

memory becomes 512KB. As a result, there is no room to store duplicated image
data and that rules out options 1 and 2. A design as illustrated in Figure 11 has

paper.tex; p.14

Host
BlockRam+
One_Roundli
v v v v
H'OST BlockRam+ Four_Round0 Four_Round0 Four_Round0 Four_Round0

15

been successfully implemented on the StarFire board runnig a 40 MHz clock where
Option 3 is implemented in the block “Four_Round(”.

Left_Mem Left_Mezz Right_Mezz Right_Mem

f f f f

A A A A A A A A | A A/

Figure 11. The design block diagram implemented in an XCV1000

Note that for G900 board, the SRAM size is only 256KB, not enough to hold
the whole image frame. Therefore each frame is partitioned into a few overlapping
strips of rows and the image is processed strip by strip. This is not considered in
the case of the StarFire board to avoid the complexity in terms of handling striping
for both Round 0 and Round 1. This is just one assumption that could have been
removed. In this section, many such assumptions have been imposed so to reduce
the number of options for the test case. Human designers are adept in making such
assumptions to prune the design space.

5. Conclusions and Future Work

This paper is based on the work first published in the 1999 Parallel and Distributed
Processing Techniques and Applications Conference [5]. It describes the generalized
template matching (GTM) operation and characterizes the data allocation and
buffering strategies for GTM operation on reconfigurable computers. The GTM
operation offers ample opportunity in parallelization at different levels, including
function-level, pixel-level, and multiple-mask-level. Several mechanisms that sup-
port different levels of parallelism are proposed and summarized in the paper. Such
mechanisms were implemented on two commercial FPGA boards for an IR ATR
application and design tradeoff were discussed.

Given a cost function that specifies the area-time tradeoff and constraints on
FPGA areas, an optimal design depends on factors such as (1) the input image

paper.tex; p.15

16

size, (2) size of templates, (3) whether templates are constants or variables, and in
the case of constants, the specific numeric values of templates, (4) computational
operators in the generalized correlation/convolution, (5) numeric precision of the
operators, and (6) data distribution (on memory or through bus). The problem is
complicated for human designers because hardware sharing may be possible among
multiple templates and hardware reuse may be necessary due to FPGA area con-
straints. Previously researchers have tried to produce good FPGA designs for special
cases of the GTM operation with an ad hoc approach. It is more desirable to have
systematic approaches that either enumerate and evaluate the design options or
formulate the design problem as an optimization problem. Such approaches would
enable the development of a parameterized generator that automatically generates
FPGA designs given a set of user specifications for a GTM.

References

1. M. Alderight, E.L. Gummati, V. Piuri, and G.R. Sechi, “A FPGA-based Implementation of
a Fault-Tolerant Neural Architecture for Photon Identification,” in Proc. of ACM/SIGDA
International Symposium on FPGAs, pp. 166-172, 1997.

2. R. Cook, J.S.N. Jean, J.S. Chen, “Accelerating MPEG-2 Encoder Utilizing Reconfigurable
Computing”, CERC/VIUF/IEEE Computer Society Workshop on “21st Century Electronic
Systems Design: Breakthroughs in Quality and Productivity”, University of Dayton, December
1997.

3. J.S.N. Jean, X. Liang, B. Drozd, K. Tomko and Y. Wang “Automatic Target Recognition with
Dynamic Reconfiguration,” to appear in the Journal of VLSI Signal Processing-System for
Signal, Image, and Video Technology.

4. J.S.N. Jean, X. Liang, B. Drozd, and K. Tomko, “Accelerating An IR Automatic Target
Recognition with FPGAs,” in the Proc. of IEEE Symposium on FPGAs for Custom Computing
Machines, April 1999.

5. J.S.N. Jean, X. Liang, and K. Tomko, “Data Buffering and Allocation in Mapping General-
ized Template Matching on Reconfigurable Systems,” in the Proc. of Parallel and Distributed
Processing Techniques and Applications Conference, pp. 1111 1117, June 1999.

6. W.E. King, T.H. Drayer, R.W. Conners, and P. Araman, “Using MORRPH in an Industrial
Machine Vision System,” in IEEE Symposium on FPGA Custom Computing Machines, pp.
18-26, 1996.

7. S. Singh and R. Slous, “Accelerating Adobe Photoshop with the Reconfigurable Logic,” in
IEEE Symposium on FPGA Custom Computing Machines, pp. 18-26, 1998.

8. M. Shand and L. Moll, “Hardware/Software Integration in Solar Polarimetry,” in IEEE
Symposium on FPGA Custom Computing Machines, pp. 18-26, 1998.

9. J. Villasenor, B. Schoner, K. Chia, C. Zapata, H. Kim, C. Jones, S. Lansing, and B. Mangione-
Smith, “Configurable Computing Solutions for Automatic Target Recoguition,” in IEEE
Symposium on FPGA Custom Computing Machines, pp. 70-79, 1996.

10. C. Thibeault and G. Begin “A Scan-Based Configurable, Programmable, and Scalable
Architecture for Sliding Window-Based Operations,” in IEEE TRANSACTIONS ON COM-
PUTERS, pp. 615-627, 1999.

11. M. Rencher, and B. L. Hutchings, “Automated Target Recognition on Splash 2,” in IEEE
Symposium on FPGA Custom Computing Machines, pp. 192-200, April 1997.

paper.tex; p.16

