
Data Bu�ering and Allocation in Mapping GeneralizedTemplate Matching on Recon�gurable SystemsXuejun Liang, Jack Jean and Karen TomkoDepartment of Computer Science and Engineering, Wright State University, Dayton, OH 45435,USAAbstract. Image processing algorithms for 2D digital �ltering, morphologic operations, motionestimation, and template matching involve massively parallel computations that can bene�t fromusing recon�gurable systems with massive �eld programmable gate array (FPGA) hardware re-sources. In addition, each algorithm can be considered a special case of a \generalized templatematching" (GTM) operation. Application performance on recon�gurable computer systems is oftenlimited by the bandwidth to host or o� chip memory. This paper describes the GTM operationand characterizes the data allocation and bu�ering strategies for the GTM operation on recon�g-urable computers. Several mechanisms that support di�erent levels of parallelism are proposed andsummarized in the paper. Finally, the implementation of an infrared automatic target recognitionapplication on two commercial FPGA boards is used to demonstrate the various design optionswith di�erent data allocation and bu�ering mechanisms and the pruning of the design space basedon the FPGA area and memory constraints.Keywords: Template Matching, Con�gurable Computing, Field Programmable Gate Array (FPGA),Recon�guration 1. IntroductionComputing systems that use co-processor boards based on �eld programmablegate array (FPGA) chips may adapt their hardware resources to the applicationrequirements. The technology has been demonstrated for the acceleration of var-ious applications, such as automatic target recognition (ATR)[4, 9, 11], neuralnetworks[1], Adobe Photoshop[7], Solar Polarimetry[8], and machine vision[6].Image processing algorithms for 2D digital �ltering, morphologic operations,motion estimation, and template matching share some common properties. Theyall involve massively parallel computations that can bene�t from using massiveFPGA hardware resources. In addition, each algorithm can be considered a specialcase of a generalized template matching (GTM) operation. As a result, designingoptimal implementations for these operations can be characterized similarly andbe solved systematically. A GTM operation consists of two steps as illustrated inFigure 1.In the �rst step of the GTM, the input data are \convolved" (or \correlated")with a set of masks, or templates, to produce a set of convolved data. Note thatan individual convolution may involve a sequence of masks and the computationassociated with each mask may be generalized convolution/correlation as used inmorphologic operations and in motion estimation. In the general case, the compu-c 2000 Kluwer Academic Publishers. Printed in the Netherlands.
paper.tex; p.1

2
Picture

STEP 1: Generalized
 Convolution/Correlation
 with Templates/Masks

STEP 2:
Data Summary
(Minimum/Max
Calculation)

Figure 1. Generalized template matchingtation associated with each mask can simply be a pre-speci�ed function on a numberof pixels indicated by the mask. In the second step of the GTM, the convolved dataare \summarized" which sometimes involves the calculation of the smallest valueamong a set of numbers. Each of the above mentioned algorithms is a GTM in thefollowing sense.1. Template matching: there is a set of masks in the �rst step. The second stepsummarizes each convolved data and chooses the best template based on somecriteria. For example, the maximal value inside a convolved data area may beused to indicate the �tness of a template and the best template may be de�nedas the one that �ts best, or equivalently, the one that has the largest maximalvalue. Template matching is frequently used in automatic target recognitionapplications[4, 9].2. Two-D digital �ltering: convolution of the masks and the image is used in the�rst step and there is no second step. If a sequence of cascaded �lters is used,then there is a sequence of masks. If a �lter bank is used, then there are multiplemasks in the �rst step.3. Morphologic operations: there is a sequence of masks in the �rst step and thereis no second step. Generalized convolution is used for the computation wherethe multiplication and addition operations of a convolution are replaced withaddition and maximal/minimal, respectively.4. Motion estimation: there is a set of masks in the �rst step and a generalizedcorrelation is used for the computation. The second step involves the calculationof the displacement vector for each mask. In this case, the set of masks may beparts of a previous image frame and they may have related values. In addition,the contents of masks may not be known until run time[2].A special case of the GTM operation is the \Sliding Window-Based Operations"as in [10] where all the pixels (or samples) in the \window" (or mask) are involved
paper.tex; p.2

3in the computation and sent to the computational units for processing. Note that intemplate matching sometimes a template is quite \sparse" and only a low percentageof pixels are involved in the computation. Such kind of template matching is a GTMoperation that does not belong to that class of \SlidingWindow-Based Operations."This paper characterizes the mapping of the GTM operation on recon�gurablecomputers in terms of data allocation and bu�ering. Several mechanisms that sup-port di�erent levels of parallelism are proposed and summarized in the paper.Section 2 describes the mapping of a single mask to an FPGA chip with an externalSRAM. The mapping of multiple masks to multiple FPGA chips is then described inSection 3. Section 4 presents a case study of utilizing data allocation and bu�eringstrategies. Conclusions and future work is given in Section 5.2. Mapping Single Mask to Single FPGA ChipThe following notation is used in this paper. For the GTM, suppose a mask isapplied to an image. The image has r rows and c columns and each image pixelhas b bits of precision. The mask has p rows and q columns. In addition the maskhas w number of active points which include all the points necessary for the maskcomputation. (Usually a mask contains a pattern and the active points of a maskform the pattern.)In this section, the FPGA board is assumed to have only one FPGA chip whichis directly connected to one or multiple external memory modules. The image datamay be sent from the host processor to the FPGA chip either directly or throughthe memory modules. The memory (or host) bandwidth to the FPGA can be asevere bottleneck for some applications.When no image row is bu�ered inside the FPGA chip, each pixel needs to beread from outside the FPGA (the external memory modules or the host processor)w times. Since w is usually much larger than one, it is desirable to bu�er enoughnumber of image rows inside the FPGA chip so that each image pixel needs to beread only once. When the bu�ering of image data requires too much FPGA space,it becomes necessary to store image o� chip and to access each image pixel multipletimes. The following discussion includes three cases: (1) full bu�ering of image rowsinternally, (2) no internal bu�ering of image rows, and (3) a partial bu�ering scheme.2.1. Full Image Row BufferingFigure 2 shows a 3�4 mask being applied to an image where the mask covers twelvepixels, 0, 1, 2, 3, c, c + 1, c + 2, c + 3, 2c, 2c + 1, 2c + 2, and 2c + 3. If the pixelsenclosed by the bold lines are bu�ered inside the FPGA chip, moving the mask onepixel right requires only the reading of one extra pixel, i.e., pixel 2c+4, from outsidethe FPGA. In other words, when the FPGA chip can bu�er c(p� 1) + q pixels, theimage pixels fed into the chip can be fully reused internally and each external pixel
paper.tex; p.3

4
0 1 2 3 4 5 6 •

• •
c+4c+3c+2c+1c c+5 c+6

• •

••
•

• • ••• •• • • •

2c+32c+22c+12c

• • ••• •• • • •

• •
• •Figure 2. Pixels that need to be bu�ered for a 3� 4 maskneeds to be read exactly once. That would greatly reduce the memory bandwidthrequirement.2.1.1. Function-Level ParallelismThe other advantage of internal bu�ering the image rows is that, when all the pixelsrequired to evaluate one mask are available on chip, the parallelism at the functionevaluation level can be explored. The adder tree used in [9] is an example.2.1.2. FPGA Bu�ersOn Xilinx FPGA chips, there are three di�erent mechanisms that can be used tobu�er image rows.1. Use the ip-ops in CLBs (Con�gurable Logic Blocks). One CLB can storetwo bits and those two bits can be accessed in parallel. This mechanism isgood for storing the p � q pixels in a mask area so to support the function-levelparallelism[9].2. Use the RAMs that are based on function generators in CLBs. One CLB canstore 32 bits (which cannot be accessed in parallel). This mechanism can be usedto store the (p� 1) � (c� q) pixels that are not currently used for the template.3. Use the BlockRAM, which is available only on Xilinx Virtex chips. The XCV1000chip has 32 blocks, each being a dual-ported 4,096 bit RAM. Therefore that chipsupports the parallel accessing of 64 ports where each port can be up to 16 bitwide. The BlockRAM can be used in two ways to bu�er pixels.� If CLB ip-ops are available to bu�er the p � q pixels in a mask area, theBlockRAM can be used as a bu�er so that in each clock cycle p � 1 pixelsare read from the BlockRAM and one external pixel fetched is written to theBlockRAM. One example with a 3 � 4 mask is shown in Figure 3(a) whereconsecutive pixels at the same column (such as 0, c, and 2c) are assigned toform a vector of stride one. Here the stride value of a vector is the di�erenceof block numbers between two consecutive vector elements. That guaranteesthe parallel reading of the p� 1 pixels. In the diagram pixels 0, 1, 2, 3 in theBlockRAM are labeled with parentheses indicating that those pixels can be

paper.tex; p.4

5(and could have been) overwritten. Note that consecutive pixels at the samerow (such as c, c+ 1, c+ 2, c+ 3, ...) could have been assigned to the sameblock.� If no CLB ip-op is used for bu�ering pixels, the c(p� 1) + q pixels shouldbe arranged so that the p � q pixels in a mask area can always be accessedfrom di�erent ports. This can be done by (1) distributing consecutive pixelsat the same row to form a vector of stride one, and (2) placing consecutivedata at the same column to form a vector of stride q. One example with a3� 4 mask is shown in Figure 3(b).

4

c+4

2c+4

Six Blocks of BlockRAM

•

••
(0) (1) (2) (3) 4 5
6 7 8 9
• • • • ••

c+7c+6c+5
c+1c

c+8 c+9

• •
• •

•

• • • •
2c+32c+22c+12c

c+2 c+3 c+4

Three (Left) Shift Registers

0 1 2 3

c+3c+2c+1c

2c+32c+22c+12c
From Off-chip

Mask (3 x 4)
0

••
1 2 3 4 5

6 7 8 9
• • • • ••

c+4c+3c+2
c+1c

c+5 c+6 c+7
c+8 c+9

• • • • ••
• •

• • • •

• • • •

2c+32c+22c+12c

Six Blocks of BlockRAM

(a) (b)Figure 3. Using BlockRAM to bu�er pixels: (a) With CLB ip-ops for shift registers, and (b)Without CLB ip-opsStoring c(p� 1)+ q pixels on chip can be very expensive. For example, if p = 20,q = 20, c = 640, and b = 8, there are 12,180 bytes to store. That translates intoat least 3,045 CLBs on a Xilinx 4000 series FPGA chip. This solution is desirablewhen (c(p� 1) + q) � b is small or when the properties of the computation allows fora bit sliced implementation (see [9] for an example).2.2. No Buffering of Image RowsWhen storing p image rows on chip becomes too expensive, the image can be storedo� chip. The result is that each pixel needs to be read into the FPGA chip at leastw times where w is the number of active points of a mask. If w is close to p � q, then
paper.tex; p.5

6it might be easier to simply read each pixel p � q times. However, if w is relativelysmall compared to p � q, then it might be worthwhile to store the locations of thew active points inside the FPGA chip and access each pixel only w times. In thiscase, the external memory is accessed in a pseudo random sequence according to theactive points of the mask. It takes w memory accesses to compute the applicationof the mask to one pixel location.2.2.1. Pixel-Level ParallelismSuppose each port of the external memory can provide k pixels at a time, those pixelscan be consumed by using k copies of computation units so to compute the resultsof applying the mask to k consecutive pixel locations. Without loss of generality, thefollowing description assumes k = 2 in the exploration of this pixel-level parallelism.
0

1

101

102

•

Window 0

1

2

102

103

Window 1

2

3

103

104

Window 2

3

4

104

105

Window 3

•

• •

•

• •

••

0

71

101

132

•

Window 0

1

72

102

133

Window 1

2

73

103

134

Window 2

3

74

104

135

Window 3

•

• •

•

• •

••

Even Odd

132
101
71
0

133
101
71
1

Even Window
Computation

Odd Window
Computation

1 0

0 1
0
1
1
0
•
•

• •
•

2

•

3

Multiplexer
Control

Bits

(a) (b)Figure 4. (a) Four windows resulting from applying a mask to four consecutive pixels, and (b)Using small internal bu�ers (k = 2)Assume that pixels are stored in the order of scanned lines (row major) in theexternal memory and labeled in increasing integer numbers. Figure 4(a) shows fourwindows resulting from applying a mask to four consecutive pixel locations wherethe pixel numbers involved in applying a mask are indicated in each window. Forexample, for Window 0, the numbers 0, 71, 101, 103, and so on, indicate the activepoints of the mask, or equivalently the pixels that need to be accessed from externalmemory. When the mask is moved to the next pixel location, which results inWindow 1, pixels 1, 72, 102, 133, and so on need to be used. To facilitate theparallel evaluation of windows 0 and 1, there is a need to provide simultaneouslya pair of consecutive pixels n and n + 1 to those two copies of computation unitswhere the values of n are 0, 71, 101, 132, and so on. When n is 71, providing 71
paper.tex; p.6

7and 72 simultaneously requires special mechanism because the memory word size isequal to two pixels when k = 2, and a memory word always starts at an even pixel.The special mechanism can be either of the following.1. Redundant External Data Storage: When pixels are stored in row major in theexternal memory, two neighboring pixels on the same image row cannot alwaysbe accessed in one clock cycle. For example, if pixels n and n+ 1 are stored atthe same address, then pixels n+ 1 and n+ 2 are at two consecutive addressesand they cannot be accessed in one clock cycle. To facilitate the parallelism sothat a mask can be evaluated on two neighboring pixels in parallel, the externalmemory stores redundant data as shown in Figure 5(a). In this scheme one of thetwo pixels stored at each address is redundant. That is, if pixels n and n+1 arestored at one address, then pixels n+1 and n+2 are stored at the next address.In this way, the external data storage matchs very well to the needs of the twocopies of computation units. In [4, 3] such a design was used for an automatictarget recognition application and implemented on a Giga Operations's G900FPGA board. The overhead of storing redundant data is in the extra memoryspace required and the time to arrange and store the data.
0

External
Memory

FPGA

•
• •

•

1
1
2

2
3

3 4

(a) FPGA

•
•

1
2
3

0

•
•

1
2
3 4

3

•
•

4
5
6

2

•
•

3
4
5

(b)Figure 5. Using redundant external data storage: (a) k = 2, and (b) k = 42. Small Internal Bu�er: The other option is to store pixels in the external memoryin the order of scanned lines and to use a small internal bu�er in the FPGA chipthat can store w image pixels. One such bu�er is required for each of the k copiesof computation units. One example of such a design is shown in Figure 4(b). Inthis design the FPGA chip each time reads two image pixels from the externalmemory, one with an even address and the other with an odd address. Thereare two copies of the computation units, one dedicated to even windows and theother to odd ones. In the �rst clock cycle, pixels 0 and 1 are fetched as desiredand stored without being consumed. (They will be consumed w cycles later.)In the second cycle, even though pixels 70 and 71 are fetched, only pixel 71 isuseful and stored. Pixel 72 will not be available until w cycles later. The internalbu�er therefore introduces w cycles of delay.
paper.tex; p.7

8 For many FPGA boards, a memory port is either 32-bit or 64-bit wide. Thereforeit is very possible that k is either 4 or 8. In that case, the extension of the redun-dant storage scheme is straightforward while the extension of the internal bu�eringscheme leads to extra complexity in internal control logic. An example when k = 4is shown in Figure 6. It is also possible to use a hybrid scheme that mixes the twoschemes. An example when k = 4 is shown in Figure 7.

0

1

0

0

0

1

1 1

Internal buffer

m0 m1 m2 m3

Computation

w0 w1 w2 w3

0

1 0

0 1

0 1

0

0

1

1

1

64

10 0 1

0 1 0 1 0 1

Memory

d0 d1 d2 d3

8 8 8 8

Figure 6. Internal bu�er (k = 4)2.2.2. Multiple Memory PortsFor some FPGA boards, such as the StarFire board from Annapolis Micro Systems,Inc., each FPGA chip is connected to multiple memory ports. For example, consideran FPGA chip that is connected to four di�erent ports, two 32-bit wide and two 64-bit wide. In this case, it is possible to fetch four independent pixels in one clock cycleand therefore function-level parallelism can be explored even without the internalbu�ering of image rows.
paper.tex; p.8

9
External
Memory

FPGA

0

•
• •

•

1
2

2 3
3 4

4
5

5
6 7 8 9

•
•

•
•

6 7

Window
4N

Window
4N+1

Window
4N+2

Window
4N+3

Internal
Buffer

Internal
Buffer

Figure 7. Using a hybrid scheme (k = 4) with redundant external data storage and small internalbu�ers2.3. Partial Buffering of Image RowsWhen storing p image rows on chip becomes too expensive, the image can be storedo� chip. That does not rule out the possibility of bu�ering less number of imagerows inside an FPGA chip. With full bu�ering, only one pixel need to be broughtin from o� chip per window evaluation. With no row-bu�ering, w pixels need to beaccessed instead. By using partial bu�ering, only those active points that are notavailable on chip needs to be fetched. It is therefore possible to trade-o� space andtime and to optimize designs in this way.3. Mapping Multiple Masks to Multiple FPGA ChipsWhen there are multiple masks, they may be evaluated in parallel. This level ofparallelism is in addition to the function-level parallelism and the pixel-level paral-lelism previously mentioned. When there are multiple FPGA chips or when thereare multiple memory ports per chip, the pixel-level parallelism may be explored ina di�erent way. The image may be partitioned into \strips" of equal number of rowsand each strip may be assigned to one single memory port (chip). When multiplemasks are assigned to the same FPGA chip, there is an opportunity for masks toshare hardware. The overlapping adder tree used in [9] is one such example.

paper.tex; p.9

10 4. Case StudyWhen mapping an application on recon�gurable systems, there are usually manydesign options by exploring parallelism at various levels. For parallelism at the pixellevel di�erent data bu�ering and allocation mechanisms require di�erent amount ofFPGA area, number of memory ports, and memory size which are all constrainedby the FPGA co-processor board. As a result, the constraints can be used to prunethe number of design options. This point is illustrated in this section by �rstimplementing an infrared automatic target recognition (IR ATR) application ontwo di�erent commercial FPGA boards and then using the data obtained from theimplementation to estimate the resource requirements of di�erent design options.In the following subsections, the IR ATR algorithm and the two FPGA boardsare �rst introduced. The design decision-making process is then described.4.1. The IR ATR AlgorithmThe IR ATR algorithm locates and identi�es ground vehicles based on a single IRimage frame. The IR ATR algorithm consists of many conceptually simple stepsthat each evaluates the matching between an image area and a template pair oftarget and background.An overview of the algorithm is shown in Figure 8. The algorithm contains severalsteps, called Round 0, Round 1, Round 2, ..., and Round 5. The �rst step, Round0, is applied to the whole image of size 480 � 640 to identify the location and thetarget super-group of regions of interests (ROIs). Here an ROI is an image pixelwhose surrounding area meets a certain criterion and is considered a candidate forfurther investigation. Usually no more than 20% of the image pixels become ROIs.(For the four test images available to the authors, less than 5% of pixels are ROIs.)Six template pairs are used in Round 0.
480 Image

640

Round
0

ROIs

Target
Super-
Group
Type

Round
1

Rounds
 2,3,4,5

Target
Type

&
Location

6 Templates 2 Templates 5 TemplatesFigure 8. The ATR algorithmOnly ROIs are passed to the second step, Round 1, for further hypothesis testingand classi�cation into target groups. Depending on which target super-group an ROIbelongs to, Round 1 uses either two or �ve templates. ROIs that passed the Round
paper.tex; p.10

111 test are further tested through the remaining rounds and at the end, several pixelssurvive with their target types identi�ed.Because of the pruning process, Round 0 is computationally the most expensivestep, followed by Round 1. Hence these two rounds were targeted for FPGA accel-eration. They were �rst implemented on the G900 board (see [3]), and then portedto the StarFire FPGA board. But as will become clear in the section, \porting"to a di�erent FPGA board may drastically change the constraints and necessitatethe \invention" of a very di�erent design, at least from a human designer's point ofview.4.2. Hardware PlatformsThe �rst recon�gurable computing platform used in this application is a 180 MHzPentium-pro personal computer hosting a G900 FPGA board which is a PCI busbased board manufactured by Giga Operations Corporation. This board consistsof eight computing modules (XMODs) where each XMOD contains two XC4020EFPGA chips, 2 MB DRAM, and 256 KB SRAM. Each XC4020E chip on an XMODis connected to a 128 KB SRAM through a 16-bit wide data port (see Figure 9).The host processor has to go through FPGA chips to access SRAM. Also, the hostprocessor has to go through YFPGA to access XFGPA. In our implementationneither the XFPGA nor the DRAM is used so to reduce the design complexity.As a result, an XMOD in our case can be considered as a single XC4020E chipconnected to a 128 KB SRAM through a 16-bit wide data port. While the FPGAscan run at two clock rates of 33MHz and 16MHz, the host and memory interfacesare limited to 16MHz.
16

16

16

16

16

16

16 16

16

XFPGA
(XC4020E)

DRAM DRAM

YFPGA
(XC4020E)

DRAM

DRAM

SRAM

SRAM

Figure 9. The XMOD architectureThe second recon�gurable platform used for this application is a 200 MHz Pentium-pro personal computer hosting a StarFire FPGA board which is a PCI bus basedboard manufactured by Annapolis Micro System, Inc. The board has one XilinxVirtex XCV1000 chip as a processing element (PE) and two local 1MB SRAMs,labeled as \Left Mem" and \Right Mem" in Figure 10, each of which has a 32-bit
paper.tex; p.11

12wide data port. The board has two mezzanine cards attached to it. Each mezzaninecard contains two 1MB SRAMs, each with a crossbar and a 64-bit wide data port.The PE can access the SRAMs on mezzanine card through the crossbar. The VirtexFPGA on the board can run at clock up to 100MHz, but the PCI clock runs at33MHz.
Left
Mem

Right
Mem

Crossbar

MEM MEM

Crossbar

MEM MEM

PE1

LEFT MEZZ

RIGHT MEZZ

32

32

64

64

64 64

6464 64 I/O
Card

PCI
Controller

Clk SRAM

Local Address/Data 32Bits 33MHz

32

32

Figure 10. The StarFire architecture4.3. Exploring Function-level ParallelismThe function-level parallelism depends on the particular computation performed oneach pixel location with a template. Since this level of parallelism is not the focusof this section, it su�ces to say that two basic FPGA computational blocks wereimplemented, one for Round 0 and the other for Round 1. (Please refer to [3] fordetails.)The basic block for Round 0 corresponds to the computation of applying onetemplate-pair to a single pixel location. The block reads in one pixel each clockcycle where each pixel is one byte long. It takes 60 clock cycles before the blockcan start applying the template-pair to the next pixel. (A template-pair contains60 active points.) Note that no row bu�ering was used because it would have takentoo much FPGA area. The basic block for Round 1 corresponds to the computationof applying one template to a single pixel location. The block consumes four pixelvalues from external memory each clock cycle and it takes 20 clock cycles beforethe block can start applying the template to the next pixel. (A Round 1 templatecontains 80 active points.)4.4. Exploring Pixel-level ParallelismTo explore the pixel-level parallelism and therefore maximize the throughput, asmany copies of those basic blocks as possible are to be squeezed into the FPGA
paper.tex; p.12

13Table I. Area requirements for various Round 0 componentsG900 (XC4020E) StarFire (XCV1000)Area (CLBs) Area (Slices)One Basic Block 268 232Internal k = 2 72 -Bu�er Hybrid(k = 4) - 114k = 4 - 129FIFO (for active pixels) 32 32Controller 186 338Sub-block A 110 -Sub-block B 158 -Multiplexer 46 -chip under the constraints of FPGA area, memory size, memory port width, andthe number of memory ports.4.4.1. Design Decision Making for G900 MappingOn each XMOD for the G900 board, the SRAM connected to FPGA chip has a 16-bit wide data port. Since the Round 0 basic block requires one pixel per clock cycle,the maximal number of copies that can be used is two. For Round 1, the basic blockrequires reading four pixels each clock cycle, which cannot be e�ectively supportedby this board without re-designing the basic block. As a result, only Round 0 isconsidered for G900 board discussion. To combine the two copies of Round 0 basicblocks, there are two main options:� Option 1: Use internal bu�er (as in Figure 4)� Option 2: Duplicate data storage (as in Figure 5(a))In order to evaluate these options, FPGA areas for several Round 0 designcomponents are listed in Table I where the CLB/Slice numbers are produced byusing Xilinx's place and route tool. It should be pointed out that the controllerCLB/Slice areas are for two copies of basic blocks in the case of G900 and for fourcopies in the case of StarFire. The controller areas may certainly change when usinga di�erent strategy for combining basic blocks. However the change is assumed tobe little. Also, the CONTROLLER area for the G900 column is more precise inthat it includes the host interface and SRAM interface while the CONTROLLERarea for the StarFire column does not.
paper.tex; p.13

14 Using Table I, the number of CLBs needed for option 1 is at least 826 (= 2 �268+72+32+186) while that for option 2 is at least 754 (= 2�268+32+186). Bothnumbers are more than 705, which is 90 percent of the CLB count on an XC4020EFPGA chip (which contains 784 CLBs). Here we are assuming that only up to 90percent of the CLBs can be used by the design. (At least ten percent are assumedto be used for placement and routing overhead.) It seems that neither option isfeasible!Further study indicates that the basic block contains two sub-blocks, A andB, and by doubling the clock frequency of sub-block B and using a multiplexer,sub-block B can be \shared" (time-multiplexed) by both copies of basic blocks.(Sub-block A cannot be shared because it uses the 33 MHz clock already for memorydata access while sub-block B originally uses the 16 MHz clock.) With the sharingof sub-block B, either option can save 112 (= 158 � 46) CLBs. Therefore option1 needs at least 714 CLBs while option 2 needs 642 CLBs. Now both options canpotentially be implemented. But of course option 2 has a better chance of success.4.4.2. Design Decision Making for StarFire MappingFor the StarFire board, there are four memory modules that are available to thePE, two with 32-bit wide data ports and two with 64-bit ones. However each portin our study is treated as a 32-bit one so to have a modular design for all memorymodules which would then simplify the design complexity. For Round 0, since eachbasic block consumes only one byte per clock cycle, a 32-bit wide data port cansupport four copies of Round 0 basic blocks and a maximal of 16 copies can bemapped to the FPGA chip. For Round 1, because the template is only applied toRound 0 ROIs and therefore random data access is required, a 32-bit wide data portis treated as 8-bit wide (i.e., 24 bits are ignored). Since the Round 1 basic blockconsumes four bytes per clock cycle, one byte from each of four memories, only onecopy is put into the FPGA.Because the FPGA chip (XCV1000) contains 12288 slices, which are more thanenough to accommodate 16 copies of Round 0 basic blocks, one copy of Round 1basic block, and the extra components, the FPGA chip area is not the constraintthat plays a critical role in the decision making process. Instead the size of eachmemory module is the constraint. (Note that one frame of the image is roughly300KB.) For each memory module, we may consider the following three options.� Option 1: Duplicate data storage (as in Figure 5(b))� Option 2: Use the hybrid strategy (as in Figure 7)� Option 3: Use internal Bu�er (as in Figure 6)Because we choose to use only 32-bit ports, the e�ective size of each mezzaninememory becomes 512KB. As a result, there is no room to store duplicated imagedata and that rules out options 1 and 2. A design as illustrated in Figure 11 has
paper.tex; p.14

15been successfully implemented on the StarFire board runnig a 40 MHz clock whereOption 3 is implemented in the block \Four Round0".
Left_Mem Left_Mezz Right_Mezz Right_Mem

BlockRam+

BlockRam+ Four_Round0 Four_Round0 Four_Round0 Four_Round0

One_Round1

Host

Host Figure 11. The design block diagram implemented in an XCV1000Note that for G900 board, the SRAM size is only 256KB, not enough to holdthe whole image frame. Therefore each frame is partitioned into a few overlappingstrips of rows and the image is processed strip by strip. This is not considered inthe case of the StarFire board to avoid the complexity in terms of handling stripingfor both Round 0 and Round 1. This is just one assumption that could have beenremoved. In this section, many such assumptions have been imposed so to reducethe number of options for the test case. Human designers are adept in making suchassumptions to prune the design space.5. Conclusions and Future WorkThis paper is based on the work �rst published in the 1999 Parallel and DistributedProcessing Techniques and Applications Conference [5]. It describes the generalizedtemplate matching (GTM) operation and characterizes the data allocation andbu�ering strategies for GTM operation on recon�gurable computers. The GTMoperation o�ers ample opportunity in parallelization at di�erent levels, includingfunction-level, pixel-level, and multiple-mask-level. Several mechanisms that sup-port di�erent levels of parallelism are proposed and summarized in the paper. Suchmechanisms were implemented on two commercial FPGA boards for an IR ATRapplication and design tradeo� were discussed.Given a cost function that speci�es the area-time tradeo� and constraints onFPGA areas, an optimal design depends on factors such as (1) the input image
paper.tex; p.15

16size, (2) size of templates, (3) whether templates are constants or variables, and inthe case of constants, the speci�c numeric values of templates, (4) computationaloperators in the generalized correlation/convolution, (5) numeric precision of theoperators, and (6) data distribution (on memory or through bus). The problem iscomplicated for human designers because hardware sharing may be possible amongmultiple templates and hardware reuse may be necessary due to FPGA area con-straints. Previously researchers have tried to produce good FPGA designs for specialcases of the GTM operation with an ad hoc approach. It is more desirable to havesystematic approaches that either enumerate and evaluate the design options orformulate the design problem as an optimization problem. Such approaches wouldenable the development of a parameterized generator that automatically generatesFPGA designs given a set of user speci�cations for a GTM.References1. M. Alderight, E.L. Gummati, V. Piuri, and G.R. Sechi, \A FPGA-based Implementation ofa Fault-Tolerant Neural Architecture for Photon Identi�cation," in Proc. of ACM/SIGDAInternational Symposium on FPGAs, pp. 166-172, 1997.2. R. Cook, J.S.N. Jean, J.S. Chen, \Accelerating MPEG-2 Encoder Utilizing Recon�gurableComputing", CERC/VIUF/IEEE Computer Society Workshop on \21st Century ElectronicSystems Design: Breakthroughs in Quality and Productivity", University of Dayton, December1997.3. J.S.N. Jean, X. Liang, B. Drozd, K. Tomko and Y. Wang \Automatic Target Recognition withDynamic Recon�guration," to appear in the Journal of VLSI Signal Processing-System forSignal, Image, and Video Technology.4. J.S.N. Jean, X. Liang, B. Drozd, and K. Tomko, \Accelerating An IR Automatic TargetRecognition with FPGAs," in the Proc. of IEEE Symposium on FPGAs for Custom ComputingMachines, April 1999.5. J.S.N. Jean, X. Liang, and K. Tomko, \Data Bu�ering and Allocation in Mapping General-ized Template Matching on Recon�gurable Systems," in the Proc. of Parallel and DistributedProcessing Techniques and Applications Conference, pp. 1111{1117, June 1999.6. W.E. King, T.H. Drayer, R.W. Conners, and P. Araman, \Using MORRPH in an IndustrialMachine Vision System," in IEEE Symposium on FPGA Custom Computing Machines, pp.18-26, 1996.7. S. Singh and R. Slous, \Accelerating Adobe Photoshop with the Recon�gurable Logic," inIEEE Symposium on FPGA Custom Computing Machines, pp. 18-26, 1998.8. M. Shand and L. Moll, \Hardware/Software Integration in Solar Polarimetry," in IEEESymposium on FPGA Custom Computing Machines, pp. 18-26, 1998.9. J. Villasenor, B. Schoner, K. Chia, C. Zapata, H. Kim, C. Jones, S. Lansing, and B. Mangione-Smith, \Con�gurable Computing Solutions for Automatic Target Recognition," in IEEESymposium on FPGA Custom Computing Machines, pp. 70{79, 1996.10. C. Thibeault and G. Begin \A Scan-Based Con�gurable, Programmable, and ScalableArchitecture for Sliding Window-Based Operations," in IEEE TRANSACTIONS ON COM-PUTERS, pp. 615-627, 1999.11. M. Rencher, and B. L. Hutchings, \Automated Target Recognition on Splash 2," in IEEESymposium on FPGA Custom Computing Machines, pp. 192-200, April 1997.
paper.tex; p.16

