
Automatic Target Recognition withDynamic Recon�gurationJack Jean, Xuejun Liang, Brian Drozd, Karen Tomko and Yan WangDepartment of Computer Science and Engineering, Wright State University,Dayton, OH 45435, USAJuly 23, 1999Abstract. This paper describes the acceleration of an infrared automatic targetrecognition (IR ATR) application with a co-processor board that contains multiple�eld programmable gate array (FPGA) chips. Template and pixel level parallelismis exploited in an FPGA design for the bottleneck portion of the application. Theimplementation of this design achieved a speedup of 21 compared to running onthe host processor. The paper then describes an FPGA resource manager (RM)developed to support concurrent applications sharing the FPGA board. With theRM, the system is dynamically recon�gurable. That is, while part of the co-processorboard is busy computing, another part can be recon�gured for other purposes. TheIR ATR application was ported to work with the RM and has been shown to adapt tothe amount of recon�gurable hardware that is available at the time the applicationis executed.Keywords: Automatic Target Recognition (ATR), Con�gurable Computing, FieldProgrammable Gate Array (FPGA), Recon�guration1. IntroductionComputing systems that use co-processor boards based on �eld pro-grammable gate array (FPGA) chips may adapt their hardware re-sources to the application requirements. The technology has been demon-strated for the acceleration of various applications, such as automatictarget recognition (ATR)[1], neural networks[2, 3, 4], Adobe Photo-shop[5], Solar Polarimetry[6], and machine vision[7]. This paper de-scribes the acceleration of an infrared (IR) ATR application with amultiple-FPGA board and the development of an FPGA resource man-ager software system. The software system supports dynamic recon�g-uration so that the IR ATR application can concurrently execute withother applications. In addition, in the concurrent execution environ-ment, the application can adapt to the amount of FPGA resourcesavailable at the application startup time.The purpose of the IR ATR application is to locate and identifyground vehicles from infrared images. The algorithm does not use inter-frame information and therefore the processing is based on individualimage frames. It is one of the research challenge problems identi�ed byc 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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2the Adaptive Computing Systems (ACS) program of the U.S. DefenseAdvanced Research Projects Agency. Similar to the ATR processing ofsynthetic aperture radar (SAR) images as in [1], the IR ATR appli-cation consists of many conceptually simple steps that each evaluatesthe matching between an image area and a template pair of target andbackground. However, because of the di�erence in the way matching isde�ned in the two di�erent ATR algorithms, the adder-tree approachused in [1] cannot be adopted for the IR ATR algorithm. Instead, adi�erent FPGA design that explored the template level parallelism andthe pixel level parallelism was developed. The achieved performance isreported and analyzed in this paper.In a deployable system, the IR ATR algorithm is probably onlyone among many other algorithms. For example, there may be onealgorithm to perform target tracking based on motion detection, one toperform ATR with a di�erent sensor, and one to perform sensor fusion.Most of these algorithms can take advantage of the FPGA resourcesand, depending on the application environment, the distribution of theFPGA resources to di�erent algorithms should be adjusted accordingly.That means, there is a need to support concurrent programs sharingthe FPGA board and to dynamically allocate FPGA resources to thoseprograms. The second part of this paper describes an FPGA resourcemanager (RM) developed for this purpose.The RM provides an operating system like interface for the pro-grammable hardware to hide the architectural details of the coprocessorboard, to manage recon�guration of the hardware during applicationexecution, and to fairly allocate FPGA resources among multiple pro-grams. With the RM, the system is dynamically recon�gurable. That is,while part of the recon�gurable hardware is busy computing, anotherpart can be recon�gured for other purposes. The IR ATR applicationwas ported to work with the RM. The resulting ATR design was ableto adapt to the amount of recon�gurable hardware that was availableat the time the application was executed.Compared to static recon�guration schemes, which do not recon�g-ure the hardware during the execution of an application, a dynamicrecon�guration scheme such as the one with the RM can accommodatemore applications, typically those that require more FPGA resourcesthan what is available and their usage of FPGA resources can besatis�ed once spread out over time. Compared to other dynamic recon-�guration schemes that statically determine how to reuse the FPGAresources [3, 8], the RM of our system allocates FPGA resources atrun time and relieves application developers from the management ofFPGA resources. The RAGE project [9] is similar to our own, but
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3emphasizes partial recon�guration. It does not support pre-loading ofcon�gurations.The rest of the paper is organized as follows. Section 2 describesthe hardware platform and the design used to accelerate the IR ATRapplication. The achieved performance is reported and analyzed. Sec-tion 3 shows the design and the implementation of the RM. The IRATR application is modi�ed to work with the RM and the results aresummarized. Section 4 concludes the paper.2. Accelerating the IR ATR Application2.1. Hardware PlatformThe recon�gurable computing platform used in this project is a 180MHz Pentium-pro personal computer hosting a G900 FPGA boardwhich is a PCI bus based board manufactured by Giga OperationsCorporation. The board has a modular design, making it suitable forresource sharing among applications. This design consists of eight com-puting modules (XMODs) where each XMOD contains two XC4020EFPGA chips, 2 MB DRAM, and 256 KB SRAM (see Figure 1). EachXC4020E chip on an XMOD is connected to a 128 KB SRAM througha 16-bit wide data port. Note that a maximum of sixteen XMODs canbe con�gured in one G900 board.The XMODs are connected together by 128 wires, called the XBUS.Among those 128 wires, 21 of them are used to support a custom busprotocol, called HBUS, which de�nes the pins and timing of signalsused for the host (or more speci�cally, the PPGA) to FPGA interface.The XBUS also contains six 16-bit busses that provide inter-XMODconnectivity. The host processor cannot access SRAM directly. All ac-cesses to SRAM need to go through the XBUS and therefore throughthe FPGA chips.
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 CPGAPPGAPCIFigure 1. G900 ArchitectureThere are two special purpose onboard FPGAs that are not part ofany XMOD. They are the PPGA and the CPGA. The PPGA (Xilinx
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4XC4013E-2) controls communication between the host computer andthe XMODS (Figure 1), by acting as the PCI bus interface to theboard. The CPGA (Xilinx XC5210-5) implements clock generation,runtime con�guration and power up functions. While the FPGAs canrun at clock rates up to 66MHz, the G900 board and host interface iscurrently limited to 16MHz.2.2. The IR ATR AlgorithmThe IR ATR algorithm locates and identi�es ground vehicles based ona single IR image frame. Similar to the ATR processing of SAR imagesas in [1], the IR ATR algorithm consists of many conceptually simplesteps that each evaluates the matching between an image area and atemplate pair of target and background. Unlike the ATR algorithm in[1] where huge number of templates are applied for the identi�cation ofone image area, the IR ATR algorithm uses a decision tree to improvethe computational e�ciency.An overview of the algorithm is shown in Figure 2. The algorithmcontains several steps, called Round 0, Round 1, Round 2, ..., andRound 5. The �rst step, Round 0, is applied to the whole image of size480� 640 to identify the location and the target super-group of regionsof interests (ROIs). Here an ROI is an image pixel whose surroundingarea meets a certain criterion and is considered a candidate for furtherinvestigation. Usually no more than 20% of the image pixels becomeROIs. (For the four test images available to the authors, less than 5%of pixels are ROIs.) Six template pairs are used in Round 0.
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5with their target types identi�ed. Because of the pruning process, Round0 is computationally the most expensive step, followed by Round 1. Andthese two rounds were targeted for FPGA acceleration with the G900board.A special feature of the IR ATR algorithm is that each image ispartitioned into �ve horizontal strips of di�erent heights. Each stripcorresponds to a range of distances for the IR sensor. All the templatesneed to be re-scaled from one strip to the next in order to calibrateto the e�ects of di�erent distance ranges. The computation involvedin Round 0 and Round 1 and their corresponding FPGA designs aredescribed as follows.2.3. Round 0 Computation and the FPGA designRound 0 locates the ROIs by applying six template pairs through thewhole image except the image boundary. (The number of template pairsis predetermined based on the number of targets and the target types.)Each template pair contains one template for a target super-groupand one for background. Each template contains a pattern of exactly30 pixels in a relatively large area, say, of size 20 by 50. (Di�erenttemplates have di�erent sizes.) Each image frame is partitioned into�ve strips of di�erent heights and each template needs to be resizedacross strip boundary.2.3.1. Round 0 ComputationFor each image pixel that is not along the boundary of an image frame,its surrounding area is tested against a template pair to see if it isan ROI. As a result, it is possible for an image pixel to be identi�edas an ROI six times, each time as a candidate of a di�erent targetsuper-group. The computation involved in the testing of one imagepixel against one template pair is as follows.1. Use the background template that contains a pattern of 30 points tolocate 30 background pixels in the surrounding area. LetMEAN bethe averaged values of these 30 background pixels. Use the targettemplate that contains a pattern of 30 points to locate 30 targetpixels in the surrounding area.2. Compute the HOT and COLD values of background and target asfollows.FOR I FROM 1 TO 30IF(background pixel[I] > MEAN)BKG Hot = BKG Hot + (background pixel[I] � MEAN)
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6 ELSEBKG Cold = BKG Cold + (MEAN � background pixel[I])END of IFEND of FORFOR I FROM 1 TO 30IF(target pixel[I] > MEAN)TRG Hot = TRG Hot + (target pixel[I] � MEAN)ELSETRG Cold = TRG Cold + (MEAN � target pixel[I])END of IFEND of FOR3. Based on the COLD and HOT values of target and backgroundcompute the correlation.Hot cor = (TRG Hot � BKG Hot)/(TRG Hot + BKG Hot)if(Hot cor < 0) Hot cor = 0Cold Cor = (TRG Cold � BKG Cold)/(TRG Cold + BKG Cold)if(Cold Cor < 0) Cold cor = 0correlation = Hot cor + Cold cor4. If (correlation � 0.65), then the pixel is a ROI.In [1] a SAR ATR algorithm was mapped to an FPGA board by pro-cessing individual image bit slices, storing several lines of image pixelson chip, and using adder trees for processing. The same technique is notfeasible for Round 0 of this IR ATR algorithm for two reasons. First,using image bit slices is not practical because of the comparisons andthe conditional additions in Step 2 and the need to computeMEAN inStep 1 and use it in Step 2. Second, without bit slicing, the bu�ering of20 rows of image data on chip requires more than 2,000 Xilinx XC4020CLBs (Con�gurable Logic Blocks) while a XC4020 chip contains only784 CLBs. Note that one row contains 640 pixels in our case while thereare only 128 pixels per (chip) row in [1].The original source code uses division to computeMEAN, Hot cor,and Cold Cor. It also uses oating point computations for the major-ity of Round 0 computation. Since both division and oating pointcomputations need large number of CLBs, the original computation isreformulated as follows.1. Let SUM be the sum of those 30 background pixels.
paper.tex; 4/05/2000; 14:19; p.6



72. Compute the HOT and COLD values of background and target asfollows.FOR I FROM 1 TO 30IF(30 x background pixel[I] > SUM)BKG Hot30 = BKG Hot30 + (30 x background pixel[I] � SUM)ELSEBKG Cold30 = BKG Cold30 + (SUM � 30 x background pixel[I])END of IFEND of FORFOR I FROM 1 TO 30IF(30 x target pixel[I] > SUM)TRG Hot30 = TRG Hot30 + (30 x target pixel[I] � SUM)ELSETRG Cold30 = TRG Cold30 + (SUM � 30 x target pixel[I])END of IFEND of FORThis step is later on referred to as the TEMPERATURE step.3. Compute the numerators and the denominators of the COLD andHOT correlation values.IF (TRG Hot30 < BKG Hot30) Hot N = 0ELSE Hot N = TRG Hot30 � BKG Hot30Hot D = TRG Hot30 + BKG Hot30IF (TRG Cold30 < BKG Cold30) Cold N = 0ELSE Cold N = TRG Cold30 � BKG Cold30Cold D = TRG Cold30 + BKG Cold30This step is later on referred to as the CONVERT step.4. If (20 x (Hot N x Cold D + Cold N x Hot D) � 13 x (Hot D xCold D)) � 0), then the pixel is an ROI. (This is based on the factthat the threshold constant 0.65 is equal to 1320 .) This step is lateron referred to as the ASSERT step.With the new formulation, the divisions are replaced with multi-plications and all the oating point computations are replaced withinteger operations. In addition, a multiplication with a constant, suchas 13, 20, and 30, can be replaced with shifting and addition.
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82.3.2. Round 0 FPGA DesignAn FPGA design that explored the parallelism at the template leveland the pixel level was developed. Figure 3 is an overview of the design.Six XC4020 chips, each on a XMOD, are used. Each chip processes thecomputation for one template pair. The image is processed strip bystrip. After an image strip is broadcast to the six FPGA chips, eachFPGA chip is loaded with a template pair. All the six chips then startthe computation in parallel and the locations of identi�ed ROIs arestored in SRAMs. When a chip �nishes its computation, it interruptsthe host processor which then reads back the ROI locations. A programrunning on the host processor would do everything as required in theoriginal source code except the locating of ROIs. To overlap the FPGAcomputation and the host machine computation, the host program usestwo threads. When the child thread is waiting for the FPGA signal ofcomputation completion for one strip, the parent thread can go aheadprocess ROIs identi�ed for the previous strips.
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102. Bu�er to store 60 test point locations, each stored as a 16-bit(SRAM) address o�set. This component takes 32 CLBs.3. A computation unit as shown in Figure 5(a) that contains threeparts:a) Two copies of the TEMPERATURE units. Each TEMPERA-TURE unit as shown in Figure 5(b) contains (1) an accumulatorto compute the sum of those 30 background image values, (2) abu�er to store those 30 values, and (3) comparators and addersto compute HOT and COLD values. This component takes 220CLBs.b) A multiplexer and the CONVERT unit. This component takes86 CLBs.c) One copy of the ASSERT unit to evaluate if the correlation isgreater than or equal to a threshold. Bit-serial multipliers areused in this component to save area. This component takes 118CLBs.The ASSERT unit is time-multiplexed to process the outputs ofthe two TEMPERATURE units. This arrangement saves one CON-VERT unit and one ASSERT unit at the expense of requiring themultiplexer. In addition, a 33 MHz clock is used for the ASSERTunit while the rest of the chip runs with a 16 MHz clock.The whole Round 0 design takes 704 CLBs per chip which is 89.8%of the total CLBs on a XC4020 chip.2.3.3. Round 0 FPGA Performance and AnalysisThe execution times with and without FPGA for Round 0 are summa-rized in Table I. Note that the time to initialize the board (2.31 seconds)and the time to load an FPGA con�guration �le (0.37 seconds) are notincluded in the table because they are considered as system initial-ization and can be amortized over an image video sequence. Table Ishows that the computation in average takes 13.07 seconds on the 180MHz Pentium-Pro host machine and 0.614 seconds with FPGA eventhough the FPGA chips run at a much slower clock frequency. As acomparison, the same computation in average takes 5.85 seconds on a400 MHz Pentium II Xeon PC, takes 5.2 seconds on a SGI Onyx thatuses a 195 MHz R10000 processor, and takes 13.46 seconds on a SGIO2 that uses a 180 MHz R5000 processor.To analyze the execution times with FPGA, note that they comefrom three di�erent parts that take no more than 0.655 (= 0.075 +0.018 + 0.562) seconds.
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1. Image data transfer from PC to XMODs: Since the image size is480 x 640, there are 300 KBytes of data. Suppose half of the dataneed to be sent twice because of the limited size of SRAM onXMODs, it should take no more than 0.075 seconds. (The datatransfer bandwidth is about 6MB/sec for write and 4MB/sec forread from G900.)
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122. Other data transfer: about 0.018 seconds. (1) The sending of tem-plates to XMODs: less than 10 Kbytes (2) The reading of resultsfrom XMODs: Assume that less than 10% of pixel locations areROIs. Since specifying each ROI location takes 2 bytes, there areabout 60 (= 300 x 0.1 x 2) KBytes to read.3. Real computation: During the computation, the image data need tobe read from SRAM to FPGA chips. For SRAM, it takes one clockcycle to read two bytes at the same address, which are used for theROI testing of two neighboring pixel locations. For an image frameof 300 K pixels, each pixel requires the evaluation of 60 bytes oftest points. So totally it takes 9 M (= 60 x 300 K / 2) clock cycles,or 0.562 seconds with a 16 MHz clock.2.4. Round 1 Computation and the FPGA designEven though Round 1 is computationally an order of magnitude lessexpensive than Round 0, speeding up Round 1 is more di�cult becauseof its relatively higher I/O requirement. The FPGA design described inthis section does not speed up Round 1; it actually slows down Round1. But it provides the CLB count for the computation unit and theinsight into how to speed up Round 1.2.4.1. Round 1 ComputationEach ROI identi�ed in Round 0 needs to be tested with Round 1.Depending on its target supergroup, the ROI goes through a test thatcontains either two or �ve templates. In either case, the followingcomputation is involved in each template calculation.1. Given a ROI pixel, locate 40 pairs of test points based on the tem-plate. Let Pi and Qi denote a pair of points, where i = 1; 2; 3; :::; 40.2. Compute the following parameters.SumP = P20i=1 jPi �QijSumM = P40i=21 jPi �QijSum = SumP + SumMSSum = P40i=1(Pi �Qi)23. Calculate the correlation.SM = 40 � SSum� Sum � SumIF (SM = 0) correlation = 0ELSE correlation = (SumP � SumM)=pSM
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134. If (correlation � 0:45), then the ROI needs to be further processedthrough Round 2.To avoid the computing of a square root and a division, the last twosteps can be reformulated as follows since 0:452 = 81400 .SM = 40 � SSum� Sum � SumIF ((SumP > SumM) AND (400 � (SumP � SumM)2 � 81 � SM))THEN the ROI needs to be further processed through Round 2:2.4.2. Round 1 FPGA DesignThe Round 1 FPGA design is shown in Figure 6. The design is astraightforward translation of the (reformulated) computing processinto hardware that �ts into one XC4020 chip. Each time the hostprogram sends two pairs of test points to the chip, one for the SumPparameter and the other for the SumM parameter. Once all the 40 pairsfor one template have been received by the chip and after a computationlatency of �ve clock cycles, the output of the design indicates if thereis a need for the ROI to go through Round 2 computation. Becausethe computation latency is �xed after the hardware receives the lastpair of test points, there is no need to interrupt the host processorwhen the output value is ready. The host program simply reads theoutput value with a delay that guarantees that the value is ready. Asindicated in the �gure, each test point uses only 4 bits of precision eventhough the original pixel uses 8 bits. The 4-bit precision was chosenafter simulation on the four test images. The design uses 379 CLBs or48.3% of the CLBs in a XC4020. When the on-chip register values canbe read from the host processor for debugging purpose, the number ofCLBs needs to increase to 441.
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14 Table II. Execution times (in seconds) for Round 1.The second column speci�es the respective numbersof ROIs that need �ve templates and two templates.Image No. of ROIs Time Time(5/2 Templates) On PC With FPGA1 3337/2838 1.251 1.4062 4058/4392 1.218 1.4373 2357/924 0.501 0.6574 5627/8154 1.359 1.6712.4.3. Round 1 FPGA Performance and AnalysisThe execution times with and without FPGA for Round 1 are summa-rized in Table II. Again the time to initialize the board and the time toload an FPGA con�guration �le are not included in the table. Table IIshows that the computation in average takes 1.032 seconds on the 180MHz Pentium-Pro host machine and 1.293 seconds with FPGA. As acomparison, the same computation in average takes 0.104 seconds ona 400 MHz Pentium II Xeon PC.To analyze why the FPGA design is slow, the fourth image �le isused as an example. In that case, 5627 ROIs use �ve templates and8154 ROIs use two templates. So the total number of templates thatare used in Round 1 is 44443. And therefore the host program spends1. 0.39 seconds on reading, writing, and formating data.2. at least 0.59 seconds on I/O over the PCI bus. For each template 80test points, or 80 bytes, are sent over the bus per ROI. Therefore,assuming the bus is dedicated to Round 1, it takes 0.59 seconds (=44443 x 80 bytes /(6 M bytes/sec)). It actually takes more thanthat amount of time because Round 0 and the host processor alsoshare the bus.3. about 0.29 seconds on FPGA computation. This is based on theassumption that it takes �ve clock cycles to receive two pairs oftest points over the PCI bus. Receiving 40 pairs therefore takes100 clock cycles. With the �ve clock cycles of computation latency,it takes 105 cycles per ROI per template. With a 16 MHz clock,that translated into 0.29 seconds (= 44443 x 105/(16 MHz)). Notethat a fairly large amount of the time is overlapped with the timefor I/O over the PCI bus.
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15A clear drawback of the design is its relying on the host processorto read those 80 test points and send them over the PCI bus. A betterdesign would store the image data on the SRAM and let the FPGAchip read those 80 points directly. Another special feature of the IRATR application that has not been explored is the fact that, when�ve templates are used for each ROI, there is a signi�cant amount ofoverlapping among the 400 (= 5 � 80) test points. This will lead to\template-speci�c" FPGA designs, similar to what was used in [1].3. Dynamic Recon�guration SupportIn a deployable system, the IR ATR algorithm is probably only oneamong many other algorithms. For example, there may be one algo-rithm to perform target tracking based on motion detection, one toperform ATR with a di�erent sensor, and one to perform sensor fusion.Most of these algorithms can take advantage of the FPGA resourcesand the distribution of the FPGA resources to di�erent algorithmsshould adapt to the application environment. That means, there is aneed to support concurrent programs sharing the FPGA board and todynamically allocate FPGA resources to those programs. This sectiondescribes such a system software, called the FPGA resource manager(RM), and the implementation of the IR ATR program on the system.Since a previous version of the RM was reported in [11], the modi�ca-tions made to the RM to accommodate the IR ATR are described inthis section. The achieved performance is also reported.3.1. RM OverviewA block diagram illustrating a system with the RM is shown in Fig-ure 7 where multiple applications can concurrently share the FPGAresources. Note that a single application may contain multiple code seg-ments, say, one for computing correlation and one for computing a par-ticular morphologic operation, and those segments may need to sharethe FPGA resources, sometimes concurrently (only if the applicationis multi-threaded).In a system with the RM, each application consists of a programto be executed on the host machine and a ow graph representingthe portion of the application to be executed on the FPGA resources.The host program is responsible for starting the execution of graphnodes through the RM. The ow graph is a weighted graph where eachnode represents FPGA computation and the weighted edges representthe control ow of the host program. With the information of multiple
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ManagerFigure 7. The dynamic recon�guration systemow graphs, one for each application, the RM allocates and de-allocatesFPGA resources so that new nodes may be loaded into the system whileother nodes are being executed. In addition, a speculative strategyis adopted by the RM in the \pre-loading" of FPGA con�guration�les to reduce and hide the recon�guration overhead and to improveperformance. The FPGA architecture is modular in the sense that theFPGA resources consist of a number of hardware units and each graphnode uses an integer number of hardware units.To provide the dynamic recon�guration capability and to supportconcurrent applications on the G900 board, an XMOD-based RM and aset of library functions have been designed and implemented. With theXMOD as the basic resource unit, the RM allocates and de-allocatesrecon�gurable computing resources both on-demand and speculatively.A set of library functions is provided so that application developerscan pass information from an application to the RM without worryingabout the details of the inter-process communications or the details ofthe G900 board control.The RM is implemented as a multi-threaded application as shownin Figure 8. The main thread is the �rst thread to be created andis the parent thread for the other threads. It �rst initializes the G900board, then spawns the loader, interrupt handler and scheduler threads.It also sets up a server socket for incoming connection requests fromapplications and waits for requests. A new application service threadis created for each requesting application, which then interacts withthe application on behalf of the RM. The main thread loops back tolisten for new requests. Communication among the di�erent threads of
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Figure 8. Overview of resource managerthe RM is accomplished through events, shared variables and sharedmemory.The application service thread establishes a stream socket connec-tion with its client application and services its requests. It receives theapplication ow graph and puts the graph into the shared memory andnoti�es the scheduler. Depending on the type of request sent from theapplication, the application service thread responds in di�erent ways.There are six types of requests that can be sent from the applica-tion: Load Graph Node, Input Data, Request Result, Execute Function,Release XMOD, and Release Flow Graph.When an application executes an FPGA function, it normally blocksuntil the function is completed. Because an FPGA function may usemultiple XMODs, the interrupt handler thread of the RM checks forthe completion of an FPGA function by servicing interrupts from theG900 board. Whenever an interrupt is received, the thread checks whichXMODs have generated an interrupt, since more than one XMOD couldbe interrupting at a time. If all the XMODs for an FPGA functionhave completed, the thread then informs the corresponding applicationservice thread.Once all the interrupts have been acknowledged by their respectiveapplication service threads, the interrupt handler enables further in-terrupts and loops back to wait till another interrupt occurs. For eachgraph node, an application developer needs to either implement aninterrupt request circuit in the FPGA designs or let the host programwait for a pre-speci�ed amount of time for the function to complete.The latter approach works only if the function completion time can beknown in advance or can be determined in a well formulated way.The scheduler thread which allocates XMODs either on-demandor speculatively normally sits idle until being \triggered" by one of
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18three di�erent types of events from an application service thread: (1)a request for demand loading, (2) the de-allocation of XMODs dueto the release of a graph node, or (3) the receiving of a new owgraph. Depending on the type of event, its scheduling parameters andavailability of resources, the scheduler either assigns an XMOD to theloader thread for loading or loops back to wait for another event tooccur.3.2. Modifications to the Resource ManagerPreviously the RM was designed based on the assumption that eachapplication contains one single thread [10, 11]. This assumption is nottrue for the IR ATR application because the ATR host program has twothreads, a child thread that computes Round 0 and a parent thread thatcreates the child thread and computes Round 1 and the rest. As a result,the same socket is used for communication between each thread and theRM application service thread that services these two threads. To syn-chronize the inter-process communication, the socket communication istreated as a critical section and guarded by a semaphore. An alternativeis to create one application service thread for each application threadinstead of each application. In this case, two di�erent sockets are usedbetween an ATR host program and the RM and no synchronizationproblem exists. However, it was found that the overhead of creatingthe extra thread and socket was usually slightly higher than that ofusing semaphores. The �nal implementation uses the semaphores.Another modi�cation to the RM is to improve the e�ciency of theinter-process communication. After the IR ATR application was portedto execute with the RM, the application slowed down drastically. Thereason was because the application sent requests to the RM close toa hundred times via a RM library function. The socket communica-tion between the application and the corresponding application servicethread had the following communication pattern.Application Application Service Thread1. write A 2. read A3. write B 4. read B5. write C6. read CAs part of the stream socket protocol the socket sent a hidden ac-knowledgement from the application service thread to the application
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19after the read A operation. This acknowledgement was extremely slow,when there was no explicit writing to the socket after read A on theapplication service thread side. To solve the problem, the �rst twomessages (i.e., A and B) were combined into one single message asfollows.Application Application Service Thread1. write A B 2. read A B3. write C4. read CIn this way, the hidden acknowledgement from the application servicethread after the read A B operation can be attached to (or \piggy-back") the write C operation. Another solution is to disable the Naglealgorithm on the application side (see pages 267{273 in [12]). Witheither solution, the inter-process communication and the resulting RMlibrary function become much faster. Note that this particular RMlibrary function is used by Round 0 but not by Round 1.3.3. IR ATR with the RMIn order for the IR ATR application to work with the RM, the hostprogram was modi�ed to incorporate several RM library function calls.There was no need to change the FPGA designs. The modi�cation wassuccessful and the IR ATR program was able to run concurrently witha Boolean satis�ability program that was described in [11]. (Di�erentdesigns for the Boolean satis�ability problem can be found in [13, 14].)The capability was achieved at the expense of longer execution time.For example, when six XMODs are used for the four test images, Round0 in average takes 0.641 seconds with the RM instead of 0.614 secondswithout using the RM.Figure 9 shows the execution times with the RM for the fourth testimage. The horizontal axis of the �gure is the number of XMODs usedfor Round 0. There are two observations of the �gure. First, in mostcases, the total execution time is smaller than the summation of Round0 time and Round 1 time. This is due to the overlapping of Round 0and Round 1 computation with the FPGA hardware and with eachother. This is especially clear in the �gure when one XMOD is used.Second, as the number of available XMODs decreases, the applicationgracefully degraded. This is because When a smaller number of XMODsis allocated to Round 0, all the other rounds get to share a higher PCIbus bandwidth. As a matter of fact, the �gure indicates that allocating
paper.tex; 4/05/2000; 14:19; p.19



20

    0

    1

    2

    3

    4

    5

1 2 3 4 5 6

C
om

pu
ta

tio
n 

T
im

e 
(S

ec
)

Number of XMODs for Round 0

Total Time
Round 0 Time
Round 1 Time

Figure 9. The execution times in seconds on top of the RM with di�erent numberof XMODs for Round 0two XMODs to Round 0 may be a better strategy than allocating sixwhen the G900 board is shared with other concurrent applications.
4. ConclusionsAn infrared automatic target recognition (IR ATR) application is accel-erated by implementing its bottleneck sections on a co-processor boardthat contains multiple �eld programmable gate array (FPGA) chips.The FPGA design explores parallelism at the template and the pixellevels and achieves a speedup of 21 compared to host processor execu-tion of Round 0, the most computationally demanding routine in theapplication. A preliminary FPGA design was implemented for Round1, the next most demanding routine. While this preliminary designdoes not provide a performance improvement, it gives us a baselineCLB count and provides performance information that can be usedto improve the design. The paper then describes an FPGA resourcemanager (RM) developed to support concurrent applications sharingthe FPGA board. We demonstrated that the IR ATR application couldrun concurrently with other FPGA applications when managed by theRM. The resulting ATR design was able to adapt to the amount ofrecon�gurable hardware that was available at the time the applicationwas executed, with a gradual performance degradation as resourceswere reduced.
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