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Abstract. This paper describes the acceleration of an infrared automatic target
recognition (IR ATR) application with a co-processor board that contains multiple
field programmable gate array (FPGA) chips. Template and pixel level parallelism
is exploited in an FPGA design for the bottleneck portion of the application. The
implementation of this design achieved a speedup of 21 compared to running on
the host processor. The paper then describes an FPGA resource manager (RM)
developed to support concurrent applications sharing the FPGA board. With the
RM, the system is dynamically reconfigurable. That is, while part of the co-processor
board is busy computing, another part can be reconfigured for other purposes. The
IR ATR application was ported to work with the RM and has been shown to adapt to
the amount of reconfigurable hardware that is available at the time the application
is executed.

Keywords: Automatic Target Recognition (ATR), Configurable Computing, Field
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1. Introduction

Computing systems that use co-processor boards based on field pro-
grammable gate array (FPGA) chips may adapt their hardware re-
sources to the application requirements. The technology has been demon-
strated for the acceleration of various applications, such as automatic
target recognition (ATR)[1], neural networks[2, 3, 4], Adobe Photo-
shop[5], Solar Polarimetry[6], and machine vision[7]. This paper de-
scribes the acceleration of an infrared (IR) ATR application with a
multiple-FPGA board and the development of an FPGA resource man-
ager software system. The software system supports dynamic reconfig-
uration so that the IR ATR application can concurrently execute with
other applications. In addition, in the concurrent execution environ-
ment, the application can adapt to the amount of FPGA resources
available at the application startup time.

The purpose of the IR ATR application is to locate and identify
ground vehicles from infrared images. The algorithm does not use inter-
frame information and therefore the processing is based on individual
image frames. It is one of the research challenge problems identified by
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the Adaptive Computing Systems (ACS) program of the U.S. Defense
Advanced Research Projects Agency. Similar to the ATR processing of
synthetic aperture radar (SAR) images as in [1], the IR ATR appli-
cation consists of many conceptually simple steps that each evaluates
the matching between an image area and a template pair of target and
background. However, because of the difference in the way matching is
defined in the two different ATR algorithms, the adder-tree approach
used in [1] cannot be adopted for the IR ATR algorithm. Instead, a
different FPGA design that explored the template level parallelism and
the pixel level parallelism was developed. The achieved performance is
reported and analyzed in this paper.

In a deployable system, the IR ATR algorithm is probably only
one among many other algorithms. For example, there may be one
algorithm to perform target tracking based on motion detection, one to
perform ATR with a different sensor, and one to perform sensor fusion.
Most of these algorithms can take advantage of the FPGA resources
and, depending on the application environment, the distribution of the
FPGA resources to different algorithms should be adjusted accordingly.
That means, there is a need to support concurrent programs sharing
the FPGA board and to dynamically allocate FPGA resources to those
programs. The second part of this paper describes an FPGA resource
manager (RM) developed for this purpose.

The RM provides an operating system like interface for the pro-
grammable hardware to hide the architectural details of the coprocessor
board, to manage reconfiguration of the hardware during application
execution, and to fairly allocate FPGA resources among multiple pro-
grams. With the RM, the system is dynamically reconfigurable. That is,
while part of the reconfigurable hardware is busy computing, another
part can be reconfigured for other purposes. The IR ATR application
was ported to work with the RM. The resulting ATR design was able
to adapt to the amount of reconfigurable hardware that was available
at the time the application was executed.

Compared to static reconfiguration schemes, which do not reconfig-
ure the hardware during the execution of an application, a dynamic
reconfiguration scheme such as the one with the RM can accommodate
more applications, typically those that require more FPGA resources
than what is available and their usage of FPGA resources can be
satisfied once spread out over time. Compared to other dynamic recon-
figuration schemes that statically determine how to reuse the FPGA
resources [3, 8], the RM of our system allocates FPGA resources at
run time and relieves application developers from the management of
FPGA resources. The RAGE project [9] is similar to our own, but
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emphasizes partial reconfiguration. It does not support pre-loading of
configurations.

The rest of the paper is organized as follows. Section 2 describes
the hardware platform and the design used to accelerate the IR ATR
application. The achieved performance is reported and analyzed. Sec-
tion 3 shows the design and the implementation of the RM. The IR
ATR application is modified to work with the RM and the results are
summarized. Section 4 concludes the paper.

2. Accelerating the IR ATR Application

2.1. HARDWARE PLATFORM

The reconfigurable computing platform used in this project is a 180
MHz Pentium-pro personal computer hosting a G900 FPGA board
which is a PCI bus based board manufactured by Giga Operations
Corporation. The board has a modular design, making it suitable for
resource sharing among applications. This design consists of eight com-
puting modules (XMODs) where each XMOD contains two XC4020E
FPGA chips, 2 MB DRAM, and 256 KB SRAM (see Figure 1). Each
XC4020E chip on an XMOD is connected to a 128 KB SRAM through
a 16-bit wide data port. Note that a maximum of sixteen XMODs can
be configured in one G900 board.

The XMODs are connected together by 128 wires, called the XBUS.
Among those 128 wires, 21 of them are used to support a custom bus
protocol, called HBUS, which defines the pins and timing of signals
used for the host (or more specifically, the PPGA) to FPGA interface.
The XBUS also contains six 16-bit busses that provide inter-XMOD
connectivity. The host processor cannot access SRAM directly. All ac-
cesses to SRAM need to go through the XBUS and therefore through
the FPGA chips.

XMOD XMOD XMOD)| ¢ ¢ ¢ [ XMOD

XBUS | |
128
PPGA — CPGA
CLOCKS

Figure 1. G900 Architecture

There are two special purpose onboard FPGAs that are not part of
any XMOD. They are the PPGA and the CPGA. The PPGA (Xilinx
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XC4013E-2) controls communication between the host computer and
the XMODS (Figure 1), by acting as the PCI bus interface to the
board. The CPGA (Xilinx XC5210-5) implements clock generation,
runtime configuration and power up functions. While the FPGAs can
run at clock rates up to 66 MHz, the G900 board and host interface is
currently limited to 16MHz.

2.2. THE IR ATR ALGORITHM

The IR ATR algorithm locates and identifies ground vehicles based on
a single IR image frame. Similar to the ATR processing of SAR images
as in [1], the IR ATR algorithm consists of many conceptually simple
steps that each evaluates the matching between an image area and a
template pair of target and background. Unlike the ATR algorithm in
[1] where huge number of templates are applied for the identification of
one image area, the IR ATR algorithm uses a decision tree to improve
the computational efficiency.

An overview of the algorithm is shown in Figure 2. The algorithm
contains several steps, called Round 0, Round 1, Round 2, ..., and
Round 5. The first step, Round 0, is applied to the whole image of size
480 x 640 to identify the location and the target super-group of regions
of interests (ROIs). Here an ROI is an image pixel whose surrounding
area meets a certain criterion and is considered a candidate for further
investigation. Usually no more than 20% of the image pixels become
ROIs. (For the four test images available to the authors, less than 5%
of pixels are ROIs.) Six template pairs are used in Round 0.

640 Target
Imaae Round Round Rounds Type
480 > 9 1 2,3,4,5 &

Location

O 0O
Db 00 0oooo

6 Templates 2 Templates 5 Templates
Figure 2. The ATR algorithm

Only ROIs are passed to the second step, Round 1, for further
hypothesis testing and classification into farget groups. Depending on
which target super-group an ROI belongs to, Round 1 uses either two
or five templates. ROIs that passed the Round 1 test are further tested
through the remaining rounds and at the end, several pixels survived
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with their target types identified. Because of the pruning process, Round
0 is computationally the most expensive step, followed by Round 1. And
these two rounds were targeted for FPGA acceleration with the G900
board.

A special feature of the IR ATR algorithm is that each image is
partitioned into five horizontal strips of different heights. Each strip
corresponds to a range of distances for the IR sensor. All the templates
need to be re-scaled from one strip to the next in order to calibrate
to the effects of different distance ranges. The computation involved
in Round 0 and Round 1 and their corresponding FPGA designs are
described as follows.

2.3. RounD 0 COMPUTATION AND THE FPGA DESIGN

Round 0 locates the ROIs by applying six template pairs through the
whole image except the image boundary. (The number of template pairs
is predetermined based on the number of targets and the target types.)
Each template pair contains one template for a target super-group
and one for background. Each template contains a pattern of exactly
30 pixels in a relatively large area, say, of size 20 by 50. (Different
templates have different sizes.) Each image frame is partitioned into
five strips of different heights and each template needs to be resized
across strip boundary.

2.3.1. Round 0 Computation

For each image pixel that is not along the boundary of an image frame,
its surrounding area is tested against a template pair to see if it is
an ROIL. As a result, it is possible for an image pixel to be identified
as an ROI six times, each time as a candidate of a different target
super-group. The computation involved in the testing of one image
pixel against one template pair is as follows.

1. Use the background template that contains a pattern of 30 points to
locate 30 background pizels in the surrounding area. Let MEAN be
the averaged values of these 30 background pixels. Use the target
template that contains a pattern of 30 points to locate 30 target
pizels in the surrounding area.

2. Compute the HOT and COLD values of background and target as

follows.

FOR T FROM 1 TO 30
IF (background_pixel[l] > MEAN)
BKG_Hot = BKG_Hot + (background_pixel[I] — MEAN)
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ELSE
BKG_Cold = BKG_Cold + (MEAN — background_pixel[I])
END of IF
END of FOR

FORIFROM 1 TO 30
IF (target_pixel[l] > MEAN)
TRG_Hot = TRG_Hot + (target_pixel[I] — MEAN)
ELSE
TRG_Cold = TRG_Cold + (MEAN — target_pixel[I])
END of IF
END of FOR

3. Based on the COLD and HOT values of target and background
compute the correlation.

Hot_cor = (TRG_Hot — BKG_Hot)/(TRG_Hot + BKG_Hot)
if(Hot_cor < 0) Hot_cor = 0

Cold_Cor = (TRG_Cold — BKG_Cold)/(TRG_Cold + BKG_Cold)
if(Cold_Cor < 0) Cold_cor = 0

correlation = Hot_cor + Cold_cor

4. If (correlation > 0.65), then the pixel is a ROL.

In [1] a SAR ATR algorithm was mapped to an FPGA board by pro-
cessing individual image bit slices, storing several lines of image pixels
on chip, and using adder trees for processing. The same technique is not
feasible for Round 0 of this IR ATR algorithm for two reasons. First,
using image bit slices is not practical because of the comparisons and
the conditional additions in Step 2 and the need to compute MEAN in
Step 1 and use it in Step 2. Second, without bit slicing, the buffering of
20 rows of image data on chip requires more than 2,000 Xilinx XC4020
CLBs (Configurable Logic Blocks) while a XC4020 chip contains only
784 CLBs. Note that one row contains 640 pixels in our case while there
are only 128 pixels per (chip) row in [1].

The original source code uses division to compute MEAN, Hot_cor,
and Cold_Cor. It also uses floating point computations for the major-
ity of Round 0 computation. Since both division and floating point
computations need large number of CLBs, the original computation is
reformulated as follows.

1. Let SUM be the sum of those 30 background pixels.
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2. Compute the HOT and COLD values of background and target as
follows.

FORIFROM 1 TO 30
IF(30 x background_pixel[I] > SUM)
BKG_Hot30 = BKG_Hot30 + (30 x background_pixel[I] — SUM)
ELSE
BKG_Cold30 = BKG_Cold30 + (SUM — 30 x background_pixel[l])
END of IF
END of FOR

FOR I FROM 1 TO 30
IF(30 x target_pixel[I] > SUM)
TRG_Hot30 = TRG_Hot30 + (30 x target_pixel[I] — SUM)
ELSE
TRG_Cold30 = TRG_Cold30 4+ (SUM — 30 x target_pixel[l])
END of IF
END of FOR

This step is later on referred to as the TEMPERATURE step.

3. Compute the numerators and the denominators of the COLD and
HOT correlation values.

IF (TRG_Hot30 < BKG_Hot30) Hot_N = 0
ELSE Hot_N = TRG_Hot30 — BKG_Hot30
Hot_-D = TRG_Hot30 + BKG_Hot30

IF (TRG_Cold30 < BKG_Cold30) Cold N = 0
ELSE Cold_-N = TRG_Cold30 — BKG_Cold30
Cold_-D = TRG_Cold30 + BKG_Cold30

This step is later on referred to as the CONVERT step.

4. 1f (20 x (Hot_N x Cold_.D + Cold_N x Hot_D) — 13 x (Hot_D x
Cold_D)) > 0), then the pixel is an ROI (This is based on the fact
that the threshold constant (.65 is equal to %) This step is later
on referred to as the ASSERT step.

With the new formulation, the divisions are replaced with multi-
plications and all the floating point computations are replaced with
integer operations. In addition, a multiplication with a constant, such
as 13, 20, and 30, can be replaced with shifting and addition.
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2.3.2. Round 0 FPGA Design

An FPGA design that explored the parallelism at the template level
and the pixel level was developed. Figure 3 is an overview of the design.
Six XC4020 chips, each on a XMOD, are used. Each chip processes the
computation for one template pair. The image is processed strip by
strip. After an image strip is broadcast to the six FPGA chips, each
FPGA chip is loaded with a template pair. All the six chips then start
the computation in parallel and the locations of identified ROIs are
stored in SRAMs. When a chip finishes its computation, it interrupts
the host processor which then reads back the ROI locations. A program
running on the host processor would do everything as required in the
original source code except the locating of ROIs. To overlap the FPGA
computation and the host machine computation, the host program uses
two threads. When the child thread is waiting for the FPGA signal of
computation completion for one strip, the parent thread can go ahead
process ROIs identified for the previous strips.

Image Strip |SRAM| | SRAM|
Image Strip vy v
Image Strip > rrcAl [ Fraa
Image Strip ” | -
Image Stri
ge Strip [sraM | [sram|
v Y
> reca ] Froa
Template 1
[sraM | [sraM]
Template 2 £y rY
Template 3 > oA P Frcal
Template 4 I i 7
Template 5
Template 6 G900 BOARD

Figure 3. Round 0 FPGA Design: each XC4020 chip handles one template

The design inside each FPGA chip is shown in Figure 4. The SRAM
in the figure is on an XMOD next to the FPGA chip. It is a 128
KB memory arranged as 64 K by 2 Bytes. The left hand side of the
figure shows the data that need to be sent from the host processor to
the FPGA chip. These include the image strip, the template pair, and
three parameters, base address, delta_x, and delta_y, that specify the
image area to be processed. The 60 valid points on a template pair are
stored in a FIFO on chip. The FIFO content is used together with the
base address to produce the 16-bit SRAM addresses. To test if a pixel
is an ROI or not, 60 addresses are produced to get 60 test points from

paper.tex; 4/05/2000; 14:19; p.8



One Image3?2 Data | 16 SRAM
Strip I Reordering I

A

Toms| s s - -1

2
Template 3 I EIFO 16,4

\J16  Pixe
|

| 1 g \ .
igfjf w0 I Register 4 ROI 5 \ \SI
0.2,4,6,8, ] Addr
Delta_x |16 I Two Down A A4 I

Delta_y Counters Computational Unit

e ===

Figure 4. Round 0 FPGA Design: XC4020 internal; the FPGA chip is enclosed
within the dashed lines.

the SRAM, 30 for the target and 30 for the background. If a pixel is
identified as an ROI, its location in the format of a 16-bit address is
written to the SRAM.

This design has two special features. First, the FPGA design uses
five bits per image pixel even though the original code uses one byte
per pixel. From simulation results, the recognition results of using five
bits were considered comparable judging from the image output files
and the number of ROIs. While using five bits per pixel does not help
in any way on a general purpose processor, it helps reduce the area
requirement in the FPGA design. Second, each template is evaluated
on two neighboring pixels in parallel. Note that, when 128 K pixels
are stored in the order of scanned lines in the 64K by 2 SRAM, two
neighboring pixels cannot always be accessed in one clock cycle. For
example, if pixels n and n 4+ 1 are stored at the same address, then
pixels n+1 and n+ 2 are at two consecutive addresses and they cannot
be accessed in one clock cycle. To facilitate the parallelism, the 128 KB
SRAM stores only 64 K image pixels at 64 K different addresses and
at each address the other byte stores the neighboring (and redundant)
pixel. That is, if pixels n and n + 1 are stored at one address, then
pixels n + 1 and n + 2 are stored at the next address.

The FPGA design contains the following components in each chip.

1. SRAM controller: it has four functions. (a) It receives contiguous
image data from the host processor and stores them in the SRAM
on the XMOD. (b) For the test of each pixel, it allows the (almost
random) access of 60 test points. (¢) Store a pixel location into
SRAM if the pixel is an ROI. (d) Allow the host program to read
back all the ROIs. This component takes 186 CLBs.
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2. Buffer to store 60 test point locations, each stored as a 16-bit
(SRAM) address offset. This component takes 32 CLBs.

3. A computation unit as shown in Figure 5(a) that contains three
parts:

a) Two copies of the TEMPERATURE units. Each TEMPERA-
TURE unit as shown in Figure 5(b) contains (1) an accumulator
to compute the sum of those 30 background image values, (2) a
buffer to store those 30 values, and (3) comparators and adders
to compute HOT and COLD values. This component takes 220
CLBs.

b) A multiplexer and the CONVERT unit. This component takes
86 CLBs.

c¢) One copy of the ASSERT unit to evaluate if the correlation is
greater than or equal to a threshold. Bit-serial multipliers are
used in this component to save area. This component takes 118
CLBs.

The ASSERT unit is time-multiplexed to process the outputs of
the two TEMPERATURE units. This arrangement saves one CON-
VERT unit and one ASSERT unit at the expense of requiring the
multiplexer. In addition, a 33 MHz clock is used for the ASSERT
unit while the rest of the chip runs with a 16 MHz clock.

The whole Round 0 design takes 704 CLBs per chip which is 89.8%
of the total CLBs on a XC4020 chip.

2.3.3. Round 0 FPGA Performance and Analysis
The execution times with and without FPGA for Round 0 are summa-
rized in Table I. Note that the time to initialize the board (2.31 seconds)
and the time to load an FPGA configuration file (0.37 seconds) are not
included in the table because they are considered as system initial-
ization and can be amortized over an image video sequence. Table I
shows that the computation in average takes 13.07 seconds on the 180
MHz Pentium-Pro host machine and 0.614 seconds with FPGA even
though the FPGA chips run at a much slower clock frequency. As a
comparison, the same computation in average takes 5.85 seconds on a
400 MHz Pentium IT Xeon PC, takes 5.2 seconds on a SGI Onyx that
uses a 195 MHz R10000 processor, and takes 13.46 seconds on a SGI
02 that uses a 180 MHz R5000 processor.

To analyze the execution times with FPGA, note that they come
from three different parts that take no more than 0.655 (= 0.075 +
0.018 + 0.562) seconds.
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Figure 5. Round 0 FPGA Design: (a) the computational unit: the CONVERT and
ASSERT units are time-multiplexed and fed by two TEMPERATURE units, (b)

the internal of the TEMPERATUR

E unit

Table I. Execution times (in seconds) for

Round 0.

| Tmage | On PC | With FPGA | Speedup |

13.106
12.980
13.187
13.016

=W N =

0.602 21.2
0.614 21.1
0.622 21.2
0.617 21.1

1. Image data transfer from PC to XMODs: Since the image size is
480 x 640, there are 300 KBytes of data. Suppose half of the data
need to be sent twice because of the limited size of SRAM on
XMODs, it should take no more than 0.075 seconds. (The data
transfer bandwidth is about 6MB/sec for write and 4MB/sec for

read from G900.)
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2. Other data transfer: about 0.018 seconds. (1) The sending of tem-
plates to XMODs: less than 10 Kbytes (2) The reading of results
from XMODs: Assume that less than 10% of pixel locations are
ROIs. Since specifying each ROI location takes 2 bytes, there are
about 60 (= 300 x 0.1 x 2) KBytes to read.

3. Real computation: During the computation, the image data need to
be read from SRAM to FPGA chips. For SRAM, it takes one clock
cycle to read two bytes at the same address, which are used for the
ROI testing of two neighboring pixel locations. For an image frame
of 300 K pixels, each pixel requires the evaluation of 60 bytes of
test points. So totally it takes 9 M (= 60 x 300 K / 2) clock cycles,
or 0.562 seconds with a 16 MHz clock.

2.4. RounD 1 COMPUTATION AND THE FPGA DESIGN

Even though Round 1 is computationally an order of magnitude less
expensive than Round 0, speeding up Round 1 is more difficult because
of its relatively higher I/O requirement. The FPGA design described in
this section does not speed up Round 1; it actually slows down Round
1. But it provides the CLB count for the computation unit and the
insight into how to speed up Round 1.

2.4.1. Round 1 Computation

Each ROI identified in Round 0 needs to be tested with Round 1.
Depending on its target supergroup, the ROI goes through a test that
contains either two or five templates. In either case, the following
computation is involved in each template calculation.

1. Given a ROI pixel, locate 40 pairs of test points based on the tem-
plate. Let P; and @); denote a pair of points, where s = 1,2, 3, ..., 40.

2. Compute the following parameters.
SumP = Y20 | P, — Q4
i=1 117 i
4
SumM = 21221 1P — Qi
Sum = SumP + SumM
SSum = 3712, (P — Qi)?
3. Calculate the correlation.

SM = 40 * SSum — Sum * Sum
IF (SM = 0) correlation = 0
ELSE correlation = (SumP — SumM)/vSM
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4. If (correlation > 0.45), then the ROI needs to be further processed
through Round 2.

To avoid the computing of a square root and a division, the last two
steps can be reformulated as follows since 0.45% = %.
SM =40 x SSum — Sum x Sum
IF ((SumP > SumM) AND (400 * (SumP — SumM)? > 81 x SM))
THEN the ROI needs to be further processed through Round 2.

2.4.2. Round 1 FPGA Design

The Round 1 FPGA design is shown in Figure 6. The design is a
straightforward translation of the (reformulated) computing process
into hardware that fits into one XC4020 chip. Each time the host
program sends two pairs of test points to the chip, one for the SumP
parameter and the other for the SumM parameter. Once all the 40 pairs
for one template have been received by the chip and after a computation
latency of five clock cycles, the output of the design indicates if there
is a need for the ROI to go through Round 2 computation. Because
the computation latency is fixed after the hardware receives the last
pair of test points, there is no need to interrupt the host processor
when the output value is ready. The host program simply reads the
output value with a delay that guarantees that the value is ready. As
indicated in the figure, each test point uses only 4 bits of precision even
though the original pixel uses 8 bits. The 4-bit precision was chosen
after simulation on the four test images. The design uses 379 CLBs or
48.3% of the CLBs in a XC4020. When the on-chip register values can
be read from the host processor for debugging purpose, the number of
CLBs needs to increase to 441.

[A]sumd S] (<]
9 9 S X | 27
L4 ABS C ur QA o}
4| |C B*j <]
gl = L= PB
H é g 10 S,20 2
O c[StmMp| Sum Q
S — — L
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T _\‘:‘1) sl é ul.20 |X
> Q c META] Bl sm |8
— — D 4 X [420
IS A 13 D|SSu 40
| I— 8 C —
Q p D: (P==1 or B==0 or A<B)?0: 1

Figure 6. Round 1 FPGA Design
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Table II. Execution times (in seconds) for Round 1.
The second column specifies the respective numbers
of ROIs that need five templates and two templates.

Image No. of ROIs Time Time
(5/2 Templates) | On PC | With FPGA

1 3337/2838 1.251 1.406

2 4058/4392 1.218 1.437

3 2357/924 0.501 0.657

4 5627/8154 1.359 1.671

2.4.3. Round 1 FPGA Performance and Analysis

The execution times with and without FPGA for Round 1 are summa-
rized in Table II. Again the time to initialize the board and the time to
load an FPGA configuration file are not included in the table. Table II
shows that the computation in average takes 1.032 seconds on the 180
MHz Pentium-Pro host machine and 1.293 seconds with FPGA. As a
comparison, the same computation in average takes 0.104 seconds on
a 400 MHz Pentium II Xeon PC.

To analyze why the FPGA design is slow, the fourth image file is
used as an example. In that case, 5627 ROIs use five templates and
8154 ROIs use two templates. So the total number of templates that
are used in Round 1 is 44443. And therefore the host program spends

1. 0.39 seconds on reading, writing, and formating data.

2. at least 0.59 seconds on I/O over the PCI bus. For each template 80
test points, or 80 bytes, are sent over the bus per ROIL. Therefore,
assuming the bus is dedicated to Round 1, it takes 0.59 seconds (=
44443 x 80 bytes /(6 M bytes/sec)). It actually takes more than
that amount of time because Round 0 and the host processor also
share the bus.

3. about 0.29 seconds on FPGA computation. This is based on the
assumption that it takes five clock cycles to receive two pairs of
test points over the PCI bus. Receiving 40 pairs therefore takes
100 clock cycles. With the five clock cycles of computation latency,
it takes 105 cycles per ROI per template. With a 16 MHz clock,
that translated into 0.29 seconds (= 44443 x 105/(16 MHz)). Note
that a fairly large amount of the time is overlapped with the time
for I/O over the PCI bus.
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A clear drawback of the design is its relying on the host processor
to read those 80 test points and send them over the PCI bus. A better
design would store the image data on the SRAM and let the FPGA
chip read those 80 points directly. Another special feature of the IR
ATR application that has not been explored is the fact that, when
five templates are used for each ROI, there is a significant amount of
overlapping among the 400 (= 5 x 80) test points. This will lead to
“template-specific’” FPGA designs, similar to what was used in [1].

3. Dynamic Reconfiguration Support

In a deployable system, the IR ATR algorithm is probably only one
among many other algorithms. For example, there may be one algo-
rithm to perform target tracking based on motion detection, one to
perform ATR with a different sensor, and one to perform sensor fusion.
Most of these algorithms can take advantage of the FPGA resources
and the distribution of the FPGA resources to different algorithms
should adapt to the application environment. That means, there is a
need to support concurrent programs sharing the FPGA board and to
dynamically allocate FPGA resources to those programs. This section
describes such a system software, called the FPGA resource manager
(RM), and the implementation of the IR ATR program on the system.
Since a previous version of the RM was reported in [11], the modifica-
tions made to the RM to accommodate the IR, ATR are described in
this section. The achieved performance is also reported.

3.1. RM OVERVIEW

A block diagram illustrating a system with the RM is shown in Fig-
ure 7 where multiple applications can concurrently share the FPGA
resources. Note that a single application may contain multiple code seg-
ments, say, one for computing correlation and one for computing a par-
ticular morphologic operation, and those segments may need to share
the FPGA resources, sometimes concurrently (only if the application
is multi-threaded).

In a system with the RM, each application consists of a program
to be executed on the host machine and a flow graph representing
the portion of the application to be executed on the FPGA resources.
The host program is responsible for starting the execution of graph
nodes through the RM. The flow graph is a weighted graph where each
node represents FPGA computation and the weighted edges represent
the control flow of the host program. With the information of multiple
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Figure 7. The dynamic reconfiguration system

flow graphs, one for each application, the RM allocates and de-allocates
FPGA resources so that new nodes may be loaded into the system while
other nodes are being executed. In addition, a speculative strategy
is adopted by the RM in the “pre-loading” of FPGA configuration
files to reduce and hide the reconfiguration overhead and to improve
performance. The FPGA architecture is modular in the sense that the
FPGA resources consist of a number of hardware units and each graph
node uses an integer number of hardware units.

To provide the dynamic reconfiguration capability and to support
concurrent applications on the G900 board, an XMOD-based RM and a
set of library functions have been designed and implemented. With the
XMOD as the basic resource unit, the RM allocates and de-allocates
reconfigurable computing resources both on-demand and speculatively.
A set of library functions is provided so that application developers
can pass information from an application to the RM without worrying
about the details of the inter-process communications or the details of
the G900 board control.

The RM is implemented as a multi-threaded application as shown
in Figure 8. The main thread is the first thread to be created and
is the parent thread for the other threads. It first initializes the G900
board, then spawns the loader, interrupt handler and scheduler threads.
It also sets up a server socket for incoming connection requests from
applications and waits for requests. A new application service thread
is created for each requesting application, which then interacts with
the application on behalf of the RM. The main thread loops back to
listen for new requests. Communication among the different threads of
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the RM is accomplished through events, shared variables and shared
memory.

The application service thread establishes a stream socket connec-
tion with its client application and services its requests. It receives the
application flow graph and puts the graph into the shared memory and
notifies the scheduler. Depending on the type of request sent from the
application, the application service thread responds in different ways.
There are six types of requests that can be sent from the applica-
tion: Load Graph Node, Input Data, Request Result, Execute Function,
Release XMOD, and Release Flow Graph.

When an application executes an FPGA function, it normally blocks
until the function is completed. Because an FPGA function may use
multiple XMODs, the interrupt handler thread of the RM checks for
the completion of an FPGA function by servicing interrupts from the
G900 board. Whenever an interrupt is received, the thread checks which
XMODs have generated an interrupt, since more than one XMOD could
be interrupting at a time. If all the XMODs for an FPGA function
have completed, the thread then informs the corresponding application
service thread.

Once all the interrupts have been acknowledged by their respective
application service threads, the interrupt handler enables further in-
terrupts and loops back to wait till another interrupt occurs. For each
graph node, an application developer needs to either implement an
interrupt request circuit in the FPGA designs or let the host program
wait for a pre-specified amount of time for the function to complete.
The latter approach works only if the function completion time can be
known in advance or can be determined in a well formulated way.

The scheduler thread which allocates XMODs either on-demand
or speculatively normally sits idle until being “triggered” by one of
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three different types of events from an application service thread: (1)
a request for demand loading, (2) the de-allocation of XMODs due
to the release of a graph node, or (3) the receiving of a new flow
graph. Depending on the type of event, its scheduling parameters and
availability of resources, the scheduler either assigns an XMOD to the
loader thread for loading or loops back to wait for another event to
occur.

3.2. MODIFICATIONS TO THE RESOURCE MANAGER

Previously the RM was designed based on the assumption that each
application contains one single thread [10, 11]. This assumption is not
true for the IR ATR application because the ATR host program has two
threads, a child thread that computes Round 0 and a parent thread that
creates the child thread and computes Round 1 and the rest. As a result,
the same socket is used for communication between each thread and the
RM application service thread that services these two threads. To syn-
chronize the inter-process communication, the socket communication is
treated as a critical section and guarded by a semaphore. An alternative
is to create one application service thread for each application thread
instead of each application. In this case, two different sockets are used
between an ATR host program and the RM and no synchronization
problem exists. However, it was found that the overhead of creating
the extra thread and socket was usually slightly higher than that of
using semaphores. The final implementation uses the semaphores.

Another modification to the RM is to improve the efficiency of the
inter-process communication. After the IR ATR application was ported
to execute with the RM, the application slowed down drastically. The
reason was because the application sent requests to the RM close to
a hundred times via a RM library function. The socket communica-
tion between the application and the corresponding application service
thread had the following communication pattern.

Application Application Service Thread

1. write_A

2. read_A
3. write_B

4. read_B

5. write_C
6. read_C

As part of the stream socket protocol the socket sent a hidden ac-
knowledgement from the application service thread to the application
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after the read_A operation. This acknowledgement was extremely slow,
when there was no explicit writing to the socket after read_A on the
application service thread side. To solve the problem, the first two
messages (i.e., A and B) were combined into one single message as
follows.

Application Application Service Thread
1. write_A_B
2. read_A_B
3. write_C
4. read_C

In this way, the hidden acknowledgement from the application service
thread after the read_A_B operation can be attached to (or “piggy-
back”) the write_C operation. Another solution is to disable the Nagle
algorithm on the application side (see pages 267 273 in [12]). With
either solution, the inter-process communication and the resulting RM
library function become much faster. Note that this particular RM
library function is used by Round 0 but not by Round 1.

3.3. IR ATR wIiTH THE RM

In order for the IR ATR application to work with the RM, the host
program was modified to incorporate several RM library function calls.
There was no need to change the FPGA designs. The modification was
successful and the IR ATR program was able to run concurrently with
a Boolean satisfiability program that was described in [11]. (Different
designs for the Boolean satisfiability problem can be found in [13, 14].)
The capability was achieved at the expense of longer execution time.
For example, when six XMODs are used for the four test images, Round
0 in average takes 0.641 seconds with the RM instead of 0.614 seconds
without using the RM.

Figure 9 shows the execution times with the RM for the fourth test
image. The horizontal axis of the figure is the number of XMODs used
for Round 0. There are two observations of the figure. First, in most
cases, the total execution time is smaller than the summation of Round
0 time and Round 1 time. This is due to the overlapping of Round 0
and Round 1 computation with the FPGA hardware and with each
other. This is especially clear in the figure when one XMOD is used.
Second, as the number of available XMODs decreases, the application
gracefully degraded. This is because When a smaller number of XMODs
is allocated to Round 0, all the other rounds get to share a higher PCI
bus bandwidth. As a matter of fact, the figure indicates that allocating
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two XMODs to Round 0 may be a better strategy than allocating six
when the G900 board is shared with other concurrent applications.

4. Conclusions

An infrared automatic target recognition (IR ATR) application is accel-
erated by implementing its bottleneck sections on a co-processor board
that contains multiple field programmable gate array (FPGA) chips.
The FPGA design explores parallelism at the template and the pixel
levels and achieves a speedup of 21 compared to host processor execu-
tion of Round 0, the most computationally demanding routine in the
application. A preliminary FPGA design was implemented for Round
1, the next most demanding routine. While this preliminary design
does not provide a performance improvement, it gives us a baseline
CLB count and provides performance information that can be used
to improve the design. The paper then describes an FPGA resource
manager (RM) developed to support concurrent applications sharing
the FPGA board. We demonstrated that the IR ATR application could
run concurrently with other FPGA applications when managed by the
RM. The resulting ATR design was able to adapt to the amount of
reconfigurable hardware that was available at the time the application
was executed, with a gradual performance degradation as resources
were reduced.
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